
 Page 1/11 

University of California, Berkeley 
College of Engineering 

Computer Science Division – EECS 
 

Spring 2006             Anthony D. Joseph 
 

Midterm Exam Solutions 
March 8, 2006 

CS162 Operating Systems 
 
 

Your Name: 
 

 

SID AND 162 Login: 
 

 

TA Name: 
 

 

Discussion Section 
Time: 

 

 
 
General Information:  
This is a closed book and notes examination. You have 90 minutes to answer as many questions 
as possible.  The number in parentheses at the beginning of each question indicates the number of 
points given to the question; there are 100 points in all. You should read all of the questions 
before starting the exam, as some of the questions are substantially more time consuming. 
 
Write all of your answers directly on this paper.  Make your answers as concise as possible. If there 
is something in a question that you believe is open to interpretation, then please ask us about it! 
    Good Luck!! 
 

Problem Possible Score 

1 21  

2 54  

3 12  

4 13  

Total 100  

 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 2/11 

 
1. (21 points total) Short answer questions: 

a. (4 points) True/False and Why? 
Lottery scheduling can be used to implement any other scheduling algorithm. 

 

TRUE     FALSE 
Why? 
FALSE. Lottery scheduling cannot implement strict priority scheduling, 
FIFO, or real-time scheduling. The correct answer was worth 2 points 
and the justification was worth an additional 2 points. 

 
 
 

b.  (5 points) Inverted Page Tables: 
i) (3 points) Give a two to three sentence description of an inverted page table.  

An inverted page table uses a hash function to map virtual addresses to 
physical addresses.. 

 
 
 
 
 
 
ii) (2 points) Briefly (2-3 sentences) state the problem it is intended to solve. 

An inverted page table supports a large virtual address space while only 
requiring a physical page table that is proportional in size to the available 
physical memory (an forward page table would require physical memory 
proportional to the size of virtual memory). We did not give credit for answers 
that stated the only problem it solves is reducing the number of lookups to 
memory. 

 
 
 

 
 
 

c. (4 points) Why would two processes want to use shared memory for 
communication instead of using message passing? Your answer should be brief 
(no more than 5 sentences). 

Shared memory has higher performance because you avoid the context 
switch overhead of using message passing through the kernel. We gave full 
credit only if your answer included both performance and context switch 
overhead. 

 
 

 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 3/11 

 
d. (4 points) We say that the operating system is an “illusionist”. Name two illusions 

that it provides: 
i) (2 points) Illusion #1:  

Any of the many illusions we’ve discussed were acceptable: exclusive access 
to CPU, memory, disk or I/O devices; “infinite” memory; etc.. 

 
 
 
 
 

ii) (2 points) Illusion #2:  
See above. 

 
 
 
 
 

e. (4 points) For system calls, we explained that arguments are sanity checked twice. 
i) (2 points) When is each check performed?  

Before entering the kernel and after entering the kernel. 
 
 
 
 
 
 
 
 

ii) (2 points) Why is this redundancy important?  
The first check is a sanity check of the arguments, the second check is for 
security purposes to detect race conditions between the current thread and 
other threads that attempt to maliciously modify the arguments (Time of 
Check to Time of Use vulnerability). We only gave full credit for answers that 
explicitly mentioned the race condition. 

 
 
 
 
 
 
 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 4/11 

2. (54 points total) CPU Scheduling. Here is a table of processes and their associated 
arrival and running times. 

Process ID Arrival Time Expected CPU 
Running Time 

Process 1 0 5 
Process 2 3 5 
Process 3 5 3 
Process 4 7 2 

 
a. (15 points) Show the scheduling order for these processes under First-In-First-Out 

(FIFO), Shortest-Job First (SJF), and Round-Robin (RR) with a quantum = 1 time 
unit. Assume that the context switch overhead is 0 and new processes are added 
to the head of the queue except for FIFO. 
Time  FIFO SJF RR 
0 
 

1 1 1 

1 
 

1 1 1 

2 
 

1 1 1 

3 
 

1 1 2 

4 
 

1 1 1 

5 
 

2 3 3 

6 
 

2 3 2 

7 
 

2 3 4 

8 
 

2 4 1 

9 
 

2 4 3 

10 
 

3 2 2 

11 
 

3 2 4 

12 
 

3 2 3 

13 
 

4 2 2 

14 
 

4 2 2 

15 
 

   



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 5/11 

b. (18 points) For each process in each schedule above, indicate the queue wait time 
and turnaround time (TRT). 

 
Scheduler Process 1 Process 2 Process 3 Process 4 
FIFO queue wait 
 

0 2 5 6 

FIFO TRT 
 

5 7 8 8 

SJF queue wait 
 

0 2 7 3 

SJF TRT 
 

5 7 10 5 

RR queue wait 
 

4 7 5 3 

RR TRT 
 

9 12 8 5 

The queue wait time is the total time a thread spends in the wait queue. 
The turnaround time is defined as the time a process takes to complete 
after it arrives. 

Part a) 5 points per column, part b) 3 points per row. We deducted one point per 
error up to the maximum score for the column/row. We deducted one point for a 
wrong overall arrival time. 

 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 6/11 

c. (6 points) Approximate Shortest Remaining Time First.  
i) (3 points) How can you approximate Shortest Remaining Time First scheduling 

without knowing how long a job takes ahead of time? 
You can approximate it by looking at the past CPU burst behavior to predict 
the future CPU burst behavior. Exceeding a quantum indicates the job is long 
running, while yielding before the quantum indicates the job is short running. 

 
 
 
 
 
ii) (3 points) How would you implement this approximation in a Lottery 

Scheduler? 
The basic solution is to take/give tickets based upon CPU usage. We gave full 
credit for answers that explained how you give or take tickets in a quantum 
period based on CPU usage, and starting with one ticket. 

 
 
 
 
 
 

 
d. (15 points) Scheduling Algorithm Pros and Cons. For each of the four algorithms 

discussed in class, list the pros and cons of the algorithm, and give one example 
situation where each algorithm would be a bad choice.  
i) (3 points) First-Come, First-Served. 

(1) Pros:  
The answers were the ones we talked about in class, or in the book. We gave 
one point for each pro/con answer. 
Easy to implement. Fair to all in order arrived. 

 
 
 
 

(2) Cons: 
Short jobs can be stuck behind long jobs – “convoy” effect. 

 
 
 
 

(3) Bad choice example: 
One long job followed by a short job.. 

 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 7/11 

ii) (3 points) Round Robin. 
(1)  Pros:  
Easy to implement. Good for short jobs (they don’t get stuck behind long 
jobs).. 

 
 

(2) Cons: 
Context switch times are a high overhead for long jobs. High TRT for equal 
length jobs.. 

 
(3) Bad choice example:  
Multiple equal length jobs.. 

 
 

iii)  (3 points) Shortest Job First/Shortest Remaining Time First  
(1) Pros:  
Optimal algorithm (i.e., best response time). Saying just “optimal” was not 
given points.. 

 
(2) Cons: 
Long jobs are starved. Predicting the future is hard.. 

 
 

(3) Bad choice example:  
An example with long jobs being starved or programs doing extra I/O in order 
to appear to have short CPU bursts. 

 
 
 

 
iv) (3 points) Lottery 

(1) Pros:  
Lowest priority jobs not starved. Highest priority jobs prioritized over lower 
priority jobs. Flexible (adaptable to behave as other algorithms). 

 
 

(2) Cons: 
Hard to debug. Cannot exactly control or predict next job.. 

 
(3) Bad choice example:  
Some example that shows necessity to tightly control what executes next, 
which may make lottery worse than priority (given that it tries to improve on 
priority). We didn’t give credit for simply making an argument about 
overhead or approximation of RR when equal-sized jobs. The same applies to 
iv) 2. 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 8/11 

No Credit – Problem X (000000000000 points) 

The 2005 Ig Nobel Prize Winners 
The 2005 Ig Nobel Prizes were awarded on Thursday October 6, 2005 at the 15th First Annual Ig Nobel 
Prize Ceremony, at Harvard's Sanders Theatre.  

AGRICULTURAL HISTORY: James Watson of Massey University, New Zealand, for his scholarly study, 
"The Significance of Mr. Richard Buckley’s Exploding Trousers." 
REFERENCE: "The Significance of Mr. Richard Buckley’s Exploding Trousers: Reflections on an Aspect 
of Technological Change in New Zealand Dairy -Farming between the World Wars," James Watson, 
Agricultural History, vol. 78, no. 3, Summer 2004, pp. 346-60. 
 
PHYSICS: John Mainstone and the late Thomas Parnell of the University of Queensland, Australia, for 
patiently conducting an experiment that began in the year 1927 – in which a glob of congealed black tar has 
been slowly, slowly dripping through a funnel, at a rate of approximately one drop every nine years. 
REFERENCE: "The Pitch Drop Experiment," R. Edgeworth, B.J. Dalton and T. Parnell, European Journal 
of Physics, 1984, pp. 198-200.  

MEDICINE: Gregg A. Miller of Oak Grove, Missouri, for inventing Neuticles – artificial replacement 
testicles for dogs, which are available in three sizes, and three degrees of firmness. 
REFERENCES: US Patent #5868140, and the book Going Going NUTS!, by Gregg A. Miller, 
PublishAmerica, 2004, ISBN 1413753167. 

LITERATURE: The Internet entrepreneurs of Nigeria, for creating and then using e-mail to distribute a 
bold series of short stories, thus introducing millions of readers to a cast of rich characters – General Sani 
Abacha, Mrs. Mariam Sanni Abacha, Barrister Jon A Mbeki Esq., and others -- each of whom requires just 
a small amount of expense money so as to obtain access to the great wealth to which they are entitled and 
which they would like to share with the kind person who assists them. 

PEACE: Claire Rind and Peter Simmons of Newcastle University, in the U.K., for electrically monitoring 
the activity of a brain cell in a locust while that locust was watching selected highlights from the movie 
"Star Wars."  
REFERENCE: "Orthopteran DCMD Neuron: A Reevaluation of Responses to Moving Objects. I. Selective 
Responses to Approaching Objects," F.C. Rind and P.J. Simmons, Journal of Neurophysiology, vol. 68, no. 
5, November 1992, pp. 1654-66. 
 
ECONOMICS: Gauri Nanda of the Massachusetts Institute of Technology, for inventing an alarm clock 
that runs away and hides, repeatedly, thus ensuring that people DO get out of bed, and thus theoretically 
adding many productive hours to the workday. 

CHEMISTRY: Edward Cussler of the University of Minnesota and Brian Gettelfinger of the University of 
Minnesota and the University of Wisconsin, for conducting a careful experiment to settle the longstanding 
scientific question: can people swim faster in syrup or in water? 
REFERENCE: "Will Humans Swim Faster or Slower in Syrup?" American Institute of Chemical Engineers  
 
NUTRITION: Dr. Yoshiro Nakamats of Tokyo, Japan, for photographing and retrospectively analyzing 
every meal he has consumed during a period of 34 years (and counting). 

FLUID DYNAMICS: Victor Benno Meyer-Rochow of International University Bremen, Germany and the 
University of Oulu , Finland; and Jozsef Gal of Loránd Eötvös University, Hungary, for using basic 
principles of physics to calculate the pressure that builds up inside a penguin, as detailed in their report 
"Pressures Produced When Penguins Pooh -- Calculations on Avian Defaecation." 
PUBLISHED IN: Polar Biology, vol. 27, 2003, pp. 56-8. 
 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 9/11 

 
 
3. (12 points total) Concurrency problem: Dining Philosophers.  

The goal of this exercise is to implement a solution to the Dining Philosophers 
problem using only semaphores (your solution may not use locks, monitors, or other 
synchronization primitives). Create a method Dine(), which waits until a diner has 
two chopsticks and can eat, then calls Eat(), and then releases the chopsticks before 
returning. Your solution should allow multiple philosophers to eat at the same time 
(as long as there are sufficient chopsticks in a pile in the middle of the table). Assume 
you are given the variable, chopsticks, which starts off initialized to the total 
number of chopsticks available. Your solution should avoid deadlock. 
 
a. (4 points) Specify the correctness constraints. Be succinct and explicit in your 

answer. 
 

A diner waits for two chopsticks (4 points). 
We gave one point for some other type of related constraint (e.g., you can’t steal 
chopsticks, there’s one chopstick per diner, etc.) We subtracted one point for 
saying something that is implementation dependent or otherwise not a correctness 
constraint. 

 
b. (8 points) Implement the Dine() method.  

The key insight is to set the initial value of the semaphore to half the number of 
chopsticks. Then, each P operation effectively grabs two chopsticks and each V 
operation relinquishes two chopsticks. 
 

      Int chopsticks = N;  // Total number of chopsticks 
      Semaphore sticks = new Semaphore(floor(chopsticks/2)); 
 
          Dine() { 
            sticks.P();  // This “acquires” two chopsticks 
            Eat(); 
            sticks.V();  // This “releases” two chopsticks 
          } 

 
-8 pts: using other synchronization primitives (i.e., locks, CVs, interrupts) 
 -7 pts: didn’t enforce correctness constraint (need two chopsticks to eat). 
-7 pts:  trying to use a semaphore in an illegal way (e.g., trying to check the value) 
-6 pts: only one diner can eat at a time. 
-5 pts: no call to Eat() 
-5 pts: deadlock possible 
-5 pts: busy waiting 
-5 pts: solution fails if chopsticks is initially set to some value 
-1 pt: extraneous/redundant semaphores 
-1 pt: didn’t show initialization of semaphore value  
 

 
 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 10/11 

Another solution: 
      Int chopsticks = N;  // Total number of chopsticks 
      Semaphore Lock = new Semaphore (1);    // mutex 
      Semaphore Sem1 = new Semaphore (chopsticsk);  // scheduling 
      Dine { 
        Lock.P();  // This “acquires” mutex 
        Sem1.P();  // This “acquires” one chopstick 
        Sem1.P();  // This “acquires” one chopstick 
        Lock.V();  // This “releases” mutex 
        Eat(); 
        Sem1.V();  // This “releases” one chopstick 
        Sem1.V();  // This “releases” one chopstick 
 
} 

 
Yet another solution: 

      Int chopsticks = N;  // Total number of chopsticks 
      Semaphore reach = new Semaphore (1);    // mutex 
      Semaphore waiting = new Semaphore (0);  // scheduling 
 
          Dine() { 
            reach.P();  // This “acquires” mutex 
            while (chopsticks < 2) { 
              reach.V();  // This “releases” mutex 
              wait.P();  // This “waits” on semaphore 
              reach.P();  // This “acquires” mutex 
            } 
            chopsticks -= 2; 
            reach.V();  // This “releases” mutex 
            Eat(); 
            Reach.P();  // This “acquires” mutex  
            chopsticks += 2; 
            reach.V();  // This “releases” mutex 
            wait.V();  // This “wakes” waiters 
          } 
 



CS 162 Spring 2006 Midterm Exam  March 8, 2006 
Solutions 

 Page 11/11 

 
4. (13 points) Virtual Memory. 

The Lemon company has hired you to design the virtual memory system for their new 
line of desktop computers, the iniM caM. Each computer will have 32 bit virtual and 
physical addresses, and memory will be allocated in 2 KByte pages.   
 
a. (4 points) For a single- level page table, how many bits will be used to index the 

page, and how many will be the offset within the page?  
i) (2 points) Number of bits for page number? 

Using the answer of 11 bits from ii), the remainder is 32-11 = 21 bits. 
 
 
ii) (2 points) Number of bits for offset within the page? 

Each page is 2 Kbytes in size which equals 211 bits, so 11 bits are needed for 
the offset. 

 
 

b. (5 points) Each page table entry will also include three bits for bookkeeping (Valid, 
Read, and Write bits). 
i) (2 points) How many bytes are required for each page table entry? 

The page table entry contains the physical page number (21 bits) and the 3 
bookkeeping bits, so the total size is 24 bits or 3 bytes. We deducted one point 
for saying the PTE included virtual page numbers or for not converting the 
value into bytes. We allowed the answer of 4 bytes only if you stated that PTEs 
are word aligned and padded. 

 
 
 
ii) (3 points) How much physical memory is required to store the table? 

The table requires 3 x 221 bytes (6 Mbytes). For consistency, if we accepted 
your answer of 4 bytes for part i), we expected an answer of 4 x 221 bytes (8 
Mbytes). 

 
 
 

c. (4 points) If the iniM caM has 16 megabytes or less of physical memory, we can 
use 24 bit physical addresses (and still have 32 bit virtual addresses).  How large 
would each page table entry and the entire table be now? 
The PTE would now require 24-11 = 13 bits for the page portion, adding the 3 
bits for bookkeeping, yields a PTE of 16 bits or 2 bytes. The table will now be 2 x 
221 bytes (4 Mbytes). We did not accept answers that assumed the PTE would 
have 213 entries, since only an inverted table would have 213 entries, but it would 
have a larger PTE. 
 

 
 


