
CS162 Fall 2011 - Project 2
Network Interprocess Communication

(Specification Version 2.2)

Instructors: Anthony D. Joseph and Ion Stoica
Project TAs: Karan Malik and Andrew Wang

Introduction
In the first project, you were asked to design and implement a multithreaded Go server, with
separate threads for Games, Players, and Observers. In this project, you will be asked to take
this one step further. Players and Observers, the clients, will run in separate processes, and
will communicate with a separate GameServer process, the server. The GameServer will be
multithreaded. A typical GameServer design might have one Manager thread, and two Client
threads for each active client.

The main challenges here are correctly synchronizing the GameServer threads, and dealing
with asynchronous client behaviour - for instance, Observers can join and leave games at any
time - as well as gracefully handling player errors such as timeouts and invalid moves.

As in Project 1, we will be requiring an initial and final design document, as well as weekly
group progress reports throughout. You are expected to re-use substantial amounts of code
from Project 1. We are still restricting the use of built-in Java synchronization primitives, so your
Lock, Semaphore, and ThreadSafeQueue implementations should make a reappearance.

Be warned that some amount of refactoring may be necessary due to API and structural
changes. These were made with the goal of clarifying intended behavior and making the code
more easily testable. We are also releasing four new code packages along with this document,
which will be necessary for your implementation:

● edu.berkeley.cs.cs162.Client
● edu.berkeley.cs.cs162.Writable
● edu.berkeley.cs.cs162.Synchronization
● edu.berkeley.cs.cs162.Server

The edu.berkeley.cs.cs162.Client package contains a number of interfaces and abstract
classes that are structured to help guide your design. You are allowed to make modifications to
the abstract classes as you add shared functionality between different Players, Observers, and
Players and Observers.
The edu.berkeley.cs.cs162.Writable package contains stubs for all the Writable types that
will be passed back and forth across sockets. You should expect these to be unit tested. Feel
free to add your own Writable types to this package as well.

The edu.berkeley.cs.cs162.Synchronization package contains a stub ReaderWriterLock
class (see “Server Process” below for more details on this). We ask that you move your
synchronization primitives (SpinLock, Lock, Semaphore, ThreadSafeQueue) from Project 1
into this new package.

The edu.berkeley.cs.cs162.Server package is where all the other miscellaneous classes
from Project 1 will reside. This includes GameServer, Rules, Board, Game, and your own
classes that you consider to be “Server” functionality.

You will also be making extensive use of Java TCP sockets, so please review the lecture and
section notes for a refresher on network socket programming, and familiarise yourself with
java.net.Socket and related classes. A short section on implementation tips and hints is
included at the end of this document.

Overall Requirements
Unless otherwise specified, the requirements from Project 1 regarding the rules of Go carry over
to Project 2. Error handling, cleanup behavior, and communication have all changed to account
for the switch to a multiple process architecture.

More detail to follow, but at a high level:

● Communication between client processes (Players and Observers) and the server
process (GameServer) must happen over Java TCP sockets

● Communication must follow the protocol outlined later in this document
● The Player and Observer classes now both inherit from a BaseClient class and

implement a shared Client interface
● Players, Observers, and Games are no longer specified statically in a config file
● Players wait for an opponent Player to register with the GameServer before a new Game

is created for the two Players
● Games no longer run in their own thread. Instead, the server spawns new Worker

threads per client
● Game and Client state is now shared between Worker threads, requiring additional

synchronization
● Clients and the GameServer may potentially be run on different machines
● There is no longer a Launcher class. Clients and the GameServer have their own main

methods.

Server Process
The GameServer is now its own process, and it should be multithreaded. One thread - the
Manager thread - should be responsible for waiting for incoming connections from clients. When
a connection request from a client comes in, the Manager thread should create a new Worker

thread and pass the connection to that thread.

Each Worker thread will have access to shared state in the GameServer process, such as
the list of games, the list of clients, and the list of Players waiting for an opponent. You are
responsible for correctly synchronizing access to this state. Your Lock, Semaphore, and
ThreadSafeQueue implementations from Project 1 should make a reappearance here.

To receive full credit for synchronizing access to shared state in the GameServer process, we
ask that you implement reader-writer locking via the provided stubbed ReaderWriterLock class
(edu.berkeley.cs.cs162.Synchronization). This means that for all shared state in the
GameServer, we expect reads to be allowed to happen concurrently, while restricting writes to
be done by only a single thread at a time. If there are multiple readers and writers waiting for
a resource, writers should get priority over readers. Note that thread cleanup becomes slightly
trickier, as threads have to be sure to release locks before terminating.

Additional requirements
● For this project, the server should limit the number of connected Clients to 100

○ Additional Client connection attempts should be denied by closing the Client’s
socket

○ Make this number easily configurable, since it might be tweaked later.
● There should be at most 2n+c threads running within the GameServer for n connected

Clients, where c is a small constant
● A Client and the GameServer should do all of their communication over just two sockets

○ One socket is for Client -> GameServer messages
○ One socket is for GameServer -> Client messages
○ This is necessary since some messages require synchronous replies

● The GameServer must correctly clean up leftover state when a Game terminates or a
Client leaves.

● Clients can leave explicitly (via a message) or implicitly (via a timeout or closing the
socket). The GameServer must correctly handle both cases.

● While we are not explicitly testing for this, part of your design document grade will be
based on the your GameServer’s architecture in relation to scalability, efficient use of
threads, and performance.

● GameServers will be passed in the IP address and port to bind to via args, e.g:
○ java GameServer 192.168.1.100 8000

Client Processes
As in the first project, we have two types of clients in the system: Observers and Players.
They will now be running in separate processes instead of separate threads, and will be
communicating with the GameServer over Java sockets.

We have refactored Observer and Player to both inherit from a BaseClient class

that implements a parent Client interface to make the roles and responsibilities of
the different client processes more clear. To this end, we have provided framework
code for the Client, BaseClient, Observer, and Player classes, as well as stubs for
PrintingObserver, HumanPlayer, and MachinePlayer. This code is available in the
edu.berkeley.cs.cs162.Client package.

Observers
● Observers can observe multiple games at once
● Observers can join and leave games at any time

Players
● Players do not observe games
● Players can play in at most one game at a time
● After a gameOver message is sent for their game, Players must waitForGame again to

play in another game
● MachinePlayer should continually wait for and play in new games, terminating if it times

out when trying to reach the GameServer

Operating assumptions
● Clients will provide globally unique names when connecting to the server
● Clients will be passed via command line arguments their name and the IP address

and port number of the GameServer like so (example - IP: 192.168.1.100, port: 8888,
name: “Andrew”):

○ java HumanPlayer 192.168.1.100 8888 Andrew

Client-Server Protocol
An important part of this project will be carefully implementing the client-server communication
protocol defined in this specification. The protocol is defined as a number of different messages,
which originate from either the client or the server. Almost all of these messages synchronously
wait for a response from the receiver, while others are asynchronous and do not expect a
response. Responses are either the data the sender is expecting, or a predefined error code.

As part of this protocol, we are also requiring you to write serialization and deserialization
routines for a number of different datatypes. Serialization and deserialization are used to have
a consistent bit-level format when transmitting data across the network. The goal here is that
different group’s implementations of Clients and the GameServer are interoperable, since they
all adhere to the same protocol specification and serialization format.

Code in the package edu.berkeley.cs.cs162.Writable defines a number of important
constants and classes to help you implement the protocol. Each message type is uniquely
identified by a byte opcode - all of these, along with status and error codes for responses to
messages, are defined in MessageProtocol.java. We also provide a Message abstract class

that we expect you to subclass for each of the message types specified below. Finally, to assist
in serialization and deserialization of messages and their parameters, we provide the Writable
interface, which defines two methods: readFrom() and writeTo(). Classes which need to be
included as message parameters or return values should implement Writable.

Serialization Format
A typical message exchange consists of two phases. The sender sends a message consisting
of a single byte opcode and a variable length set of parameters, in the order specified. The
receiver may respond, depending on the message, with a variable length set of return values or
a status or error code.

The parameters and return values in many instances include classes or primitive types. To
serialize and deserialize primitive types, use the Java classes java.io.DataInputStream and
java.io.DataOutputStream. We provide directions on serializing and deserializing lists and
classes below.

Classes that need to be serialized should implement Writable. To that end, you should create
or modify the following classes used to represent the data that each message will contain, and
implement serialization for each of them by outputting their fields in the order listed:

● ClientInfo - Uniquely identifies a client (either Player or Observer)

○ String name

○ byte playerType (see MessageProtocol.java)

● GameInfo - Uniquely identifies an ongoing game

○ String name

● Location - Specifies the (x, y) coordinates on a board

○ int x

○ int y

● StoneColorInfo - The color of a stone (black, white, or none)

○ byte color (see MessageProtocol.java)

● BoardInfo - The entire state of the board

○ StoneColorInfo[][] board: a list of lists of StoneColorInfos. Serialize by row,
then column, in increasing array index order.

To serialize a list, output the following items in order:

● int numItems: the number of items in the list, serialized as a primitive type
● numItems items, each serialized individually either as a Writable or a primitive type

As an example, if we have a list of two Locations, [L1 L2], we would output the following in
order:

● int 2

● int L1.x
● int L1.y
● int L2.x
● int L2.y

with each int serialized using java.io.DataOutputStream.

String serialization is considered a special case of list serialization, with the string treated as a
list of characters. To serialize strings, output the length of the string as an int first, followed by
the characters. Use DataOutputStream.writeChars() for the latter.

As an example, the string “abc” would be serialized as follows:

● int 3
● char a
● char b
● char c

3-way Paired Handshake Protocol

Clients and the GameServer will communicate over a pair of sockets. One socket will be used
for client-to-server messages, and one for server-to-client messages. The need for paired
sockets is because the Client needs to be able to send new messages to the server, even if
the server is waiting for a reply to a message it sent. As a concrete example, imagine that the
Server sends a getMove message to Player, and is waiting for a Location where the Player
is moving in response. If the Player instead wants to disconnect immediately (by sending a
disconnect message, an operation that can be done at any time), this could not be supported
by just a single socket. In short, having two sockets, one for each direction of messages being
sent, allows both the client and server to send synchronous messages at the same time.

The Client and GameServer should use the following protocol to logically link a pair of sockets
together as being from the same Client. Take note that before clients and the server exchange
any of the messages described in the tables below, they will need to complete this 3-way paired
handshake. That is, before a connect message can be sent, the 3-way handshake must first be
completed.

This protocol bears a striking resemblance to TCP’s 3-way handshake protocol. We are using
the same terminology here. Every message exchanged in this protocol consists only of ints.

● Client opens two sockets with the server
● Client generates a random int, rand1
● Client sends SYNs:

○ On both sockets: send rand1
● When the server sees rand1 from two different sockets, it can pair them as being from

the same client

● Server generates two random ints, rand2 and rand3, such that rand2 < rand3.
● Server arbitrarily designates one socket as socket 1 for client->server communication

and another as socket 2 for server->client communication.
● Server sends SYNACKs:

○ On socket 1 (client->server): send rand2, followed by rand1+1
○ On socket 2 (server->client): send rand3, followed by rand1+1

● Since rand2 < rand3, the client now also knows which is socket 1 and which is socket 2.
● Client sends ACKs:

○ socket 1 (client->server): send rand2+1
○ socket 2 (server->client): send rand3+1

After the handshaking process is complete, the random SYN and ACK numbers will not be used
for anything else (unlike handshaking in TCP). Errors at any point during handshaking can be
resolved by closing the sockets. The server should discard dangling sockets after a 3 second
timeout, if the handshaking process does not make progress. The normal 3s socket timeout
basically applies to each stage, not to the entire handshaking process.

Finally, note that it is not necessary for you to account for potential random number collision
between two unrelated clients both trying to connect at the same time.

After the 100 client limit is reached, the server should also refuse socket connections from
additional clients. Below the 100 client limit, any number of half-open connections is still allowed
(within reason), though they are still subject to the 3s timeout.

Client-to-server messages

Opcode Parameters Type Reply Description

connect ClientInfo player sync STATUS_OK
-or-
ERROR_REJECTED

Connects to the game server.

ERROR_REJECTED is returned
if an already connected client
tries to connect again.

disconnect async Disconnects from the game
server. If a Player calls this,
they forfeit the game they are
playing. If an Observer calls
this, they leave all games
they are observing. After this,
the server must close down
the Client’s sockets.

waitForGam
e

 sync STATUS_OK
-or-
ERROR_UNCONNECTE

For players. Signals that the
player wants to play in the
next game created.

D
-or-
ERROR_REJECTED

ERROR_UNCONNECTED is
returned if the player has not
yet sent a connect message.

ERROR_REJECTED is returned
if an Observer sends this
message, or a Player calls
this when already waiting or
when in a game.

listGames sync STATUS_OK,
[GameInfo
g1, GameInfo
g2, ...]
-or-
ERROR_UNCONNECTE
D
-or-
ERROR_REJECTED

For observers. Lists the
games in progress that the
observer can watch.

ERROR_REJECTED is returned
if a Player sends this
message.

join GameInfo game sync STATUS_OK,
BoardInfo board,
ClientInfo
blackPlayer,
ClientInfo
whitePlayer
-or-
ERROR_INVALID_GA
ME
-or-
ERROR_UNCONNECTE
D
-or-
ERROR_REJECTED

For observers. Tells the
server that the observer
wants to join the given game.

ERROR_REJECTED is returned
if a Player sends this
message.

leave GameInfo game sync STATUS_OK
-or-

ERROR_INVALID_GA
ME
-or-
ERROR_UNCONNECTE
D
-or-
ERROR_REJECTED

For observers. Tells the
server that the observer
wants to leave the given
game. After this, the server
should send at most one
more message related to that
game to the observer. This
allows the message currently
being sent to be flushed.

ERROR_REJECTED is returned
if a Player sends this
message.

Server-to-client messages

Opcode Parameters Type Reply Description

gameStart GameInfo
game,
BoardInfo
board,
ClientInfo
blackPlayer,
ClientInfo
whitePlayer

sync STATUS_OK Tells two players that they
are playing against each
other in a new game.

blackPlayer is assigned as
the black player, and moves
first.

whitePlayer is the white
player.

board is the initial board.
The server picks the size,
and clients should be able to
handle any size between 3
and 19.

Observers may also receive
this message, if they join after
a game is created, but before
it’s started.

gameOver GameInfo
game,
double
blackScore,
double
whiteScore,
ClientInfo
winner,
byte reason

Extra error
parameters:
ClientInfo
player,
String
errorMsg

sync STATUS_OK Broadcasts that a game is
over.

winner is the winner of the
game.

reason is either GAME_OK,
or if the game ended
because of a player error.
The possible values for
reason are specified in
MessageProtocol.java.

If reason is an error (that is,
not GAME_OK), the optional
extra parameters indicate the
player response for the error,
along with a human-readable
string that provides the error
message.

makeMove GameInfo
game,
ClientInfo
player,
byte
moveType,
Location loc,
[Location
capturedSton
e1, Location
capturedStone
2, …]

sync STATUS_OK Broadcasts that player
placed a stone at loc. There
is a moveType parameter
(MOVE_STONE, MOVE_PASS),
and a list of Locations of
stones captured by the move.

This is followed by a getMove
to the player whose turn it is
next.

getMove sync STATUS_OK,
byte moveType,
Location loc

The server sends this to a
specific player to request a
move.

Players respond with a
moveType and a location.

Specific timeouts need to
be enforced for players to
reply to getMove. See later
sections on “Error Handling
and Fault Tolerance” and “Go
Game Logistics”.

Error Handling and Fault Tolerance

All socket reads should be set by default to use a timeout of 3 seconds. See the
java.net.Socket.connect() and setSoTimeout() methods. Since this timeout does not
affect calls to write() (which instead blocks when the sender’s buffer fills up), the socket
timeout applies to the reading of responses to synchronous messages. Put another way, the
socket timeout is relevant for situations where the server or client is unable to make expected
contact within the timeout.

In the case of a timeout, relevant server-side state should be cleaned up, and all sockets
associated with the client should be explicitly closed. Since all messages expect a reply besides
disconnect, this should effectively result in a 3s timeout on client-server communication.
disconnect is handled effectively the same way as a timeout: closing down sockets and
cleaning up state.

In the case that the server receives an invalid message opcode, or a corrupted or otherwise
unparseable message, the server should again simply close the client’s sockets and clean up
state. This is essentially the only way to recover when the server does not know what to expect
next from the client. Thus, it is best off terminating the connection and starting over.

The server is trusted enough to not send the client mangled messages, but you should add the
same type of cleanup behavior to MachinePlayer, where the client will close down sockets and
cleanly exit in the case of a timeout.

Handling errors made by a Player playing in a game is more complicated. Socket timeouts,
explicit disconnect messages, and invalid bytes all result in forfeiture and ending of the game.
As stated above, these actions result in immediate closing of sockets and cleaning up state. The
other clients associated with the game will receive a gameOver message with the status set to
PLAYER_FORFEIT. Errors made by an observer result in normal error handling, and no externally
visible action to other clients since they are not active participants in the game.

Besides socket read timeouts, the server will also need to enforce move timeouts on players
in games. The enforcement behavior of move timeouts is the same as for socket timeouts:
closing of the sockets, cleaning up state, and a gameOver message with PLAYER_FORFEIT.
Clients register as either a Human, Machine, or Observer when initially connecting to the server.
When the server sends a getMove message, HumanPlayers are allocated 30 seconds and
MachinePlayers 2 seconds from the time the server starts sending the message and finishes
receiving its response. This differs from the normal socket timeout of 3 seconds, and might
need to be enforced differently for correctness. The actual remote procedure call (e.g., the
complete round trip of sending the message and receiving the response) could take more than
30 seconds in the case of a very slow client, but will still ultimately result in a forfeit.

After a client completes the 3-way handshake, it must send a connect message before sending
any other messages, besides a disconnect message. In the case of invalid behavior here, the
server should reply back with ERROR_UNCONNECTED, and simply close the client’s sockets and
clean up state.

Unless otherwise specified, sending ERROR_REJECTED does not result in explicit closing of the
client’s sockets.

Example client-server message exchange
We are going to walk through an example exchange between two Players P1 and P2, an
Observer O1, and a GameServer process G1. This will show the expected messages between
entities. Some parameters, return values, and status codes are elided for simplicity; refer to the
actual specification for the actual and complete message formats.

First, P1 and P2 both complete the 3-way handshake with G1.

Next, P1 and P2 register with G1 via connect messages:

P1: connect pinfo1 → G1
G1: OK → P1

P2: connect pinfo2 → G1
G1: OK → P2

Next, P1 tells G1 it wants to play in the next game:

P1: waitForGame → G1
G1: OK → P1

Next, P2 tells G1 it wants to play in the next game. Since P1 is also waiting, G1 starts a new
game for the two players:

P2: waitForGame → G1
G1: OK → P2
G1: gameStart → P1
G1: gameStart → P2

G1 now explicitly requests a move from P1:

G1: getMove → P1
P1: OK, loc → G1

G1 broadcasts the move to both P1 and P2:

G1: makeMove loc → P1
G1: makeMove loc → P2

Now G1 explicitly requests a move from P2:

G1: getMove → P2
P2: OK, loc → G1

… and so on.

Observer O1 now connects, and lists the available games:

O1: connect oinfo1 → G1
G1: OK → O1
O1: listGames → G1
G1: [GameInfo g1] → O1

O1 now knows about the game that P1 and P2 are playing in, and asks to join it:

O1: join g1 → G1
G1: OK, Board, pinfo1, pinfo2 → O1

O1 now has the state of the game up to that point, and receives all the move updates.

Pretend now that P1 and P2 pass in sequence, and the game is over. G1 now needs to
terminate the game.

P2: OK, MOVE_PASS, loc → G1 # this is the second pass
G1: makeMove → P1

G1: makeMove → P2
G1: makeMove → O1
G1: gameOver → P1
G1: gameOver → P2
G1: gameOver → O1

P1 and P2 now need to waitForGame again before they play in another game. O1 can
listGame again and start observing additional games.

Go Game Logistics
● The black player plays first.
● When a player makes an invalid move, the GameServer should send a gameOver

message, with the reason set to PLAYER_INVALID_MOVE. These and other reasons are
defined in MessageProtocol.

● If the player makes a move that violates the Ko rule, the game is ended via a gameOver
message with the reason set to PLAYER_KO_RULE.

● If a player explicitly forfeits the game by responding to a getMove with a MOVE_FORFEIT,
the game is ended via a gameOver message with the reason to MOVE_FORFEIT.

● There is no makeMove sent for any of these three cases: invalid moves, Ko rule
violations, and explicit forfeitures.

● Note that we are using the Ko rule as described in Project 1 (not on Wikipedia!)

Design Document
Your design document should include, at a minimum, the following non-exhaustive list of items:

● A high-level description of your GameServer, and how you had to adapt it to a
networked environment

● A high-level architecture diagram of the GameServer and a number of Clients, showing
what is a process vs. thread, socket connections, and important bits of global state (e.g.
arrays, queues)

● A state diagram depicting the behavior of the client. Transitions between states should
be the messages and responses specified in the protocol section. Include initial and
termination states.

● A description of how you designed your serialization and deserialization classes, and
how they are used in your system.

● A description of how you plan to implement reader-writer locking and fill in
the ReaderWriterLock class. Details of SpinLock, Lock, Semaphore, and
ThreadSafeQueue can be elided since they are Project 1 material.

● Descriptions of your Player and Observer classes.
● An testing plan that covers the essential classes and different aspects of system

behavior. This means both unit tests and integration tests.

Hints

Implementation
● A portion of your grade is going to be based on code style. Make sure to comment your

code, use sensible variable names, indent correctly, etc. Define a group policy and stick
to it.

● The flush() method can be used to force a Socket to send the contents of its send
buffer. This is useful when sending small amounts of information and then waiting for a
reply.

● Look at the ServerSocket and Socket Java classes.

Andrew wrote a little multithreaded server (Provider.java) and client (Requester.java) which
follows the basic architecture that should be used for the multithreaded Go server. The Provider
listens on a ServerSocket and spawns a new worker thread for every new connection. It might
be useful as a reference.

See here: https://github.com/umbrant/iowt/tree/master/iowt-java-mt

Testing
● Try testing with another team’s server and client classes. This helps ensure

interoperability and adherence to the specification.
● Test each Writable class’s serialization and deserialization routines separately
● Go down the list of errors that each message could return, and ensure that they are

being handled correctly.
● Ensure timeouts are being handled correctly, both in the client and server processes
● Make sure you are enforcing the game mechanics, as described both in Project 1 and in

this project

Specification Changelog

Version 1.0
● Initial release

Version 1.1
● Minor fixes and clarifications
● List all of the classes within Synchronization package
● Clarify global vs. game timeouts
● Specify String serialization as a subcase of list serialization
● Modify “sendMove” message to have a new parameter for pass moves vs. normal

Version 1.2
● Specified behavior when client returns ERROR_REJECTED to gameStart message
● Further clarified socket timeouts
● Added BoardInfo as part of gameStart message

● Removed need for Observer ack when it receives a gameStart
● Removed requirement for error states in design doc state diagram
● Specified cmdline args for GameServer IP addr and port #
● Renamed StoneColor Writable to StoneColorInfo to prevent conflict with

StoneColor enum from project 1 code
● Added BaseClient abstract class that implements Client. Player and Observer now

extend BaseClient.
● Client.getPlayerInfo() renamed to Client.getClientInfo()
● Made Writeable.readFrom() and writeTo() throw IOException

Version 2.0
● Raise the limit on # of threads to be 2n+c, n is the # clients, c is a small constant.
● makeMove has a new moveType parameter for pass moves
● New edu.berkeley.cs.cs162.Server package for server stuff
● Removed mention of DataInputStream.readFully(), since Java uses UTF-16 (2

bytes), not ASCII (1 byte).
● Client now takes the client’s name as a command line argument.
● Instead of having stoneCaptured messages, the list of captured Locations is passed

as part of the makeMove message
● The sendMove message (client to server) has been functionally replaced with getMove

(server to client)
● The playerError message has been folded into gameOver, since it was redundant
● The disconnect message no longer needs an “ack”.
● Further clarified player move timeouts vs. normal socket timeouts

Version 2.1
Spec:

● All messages now require replies, except for disconnect. This is to fix the inability to do
timeouts on write() by always having a read() for a reply that can timeout.

● Socket timeouts are only required for socket reads of replies to messages. This is also
because due to setSoTimeout() not applying to writes.

● Observer-only and Player-only methods can now all return ERROR_REJECTED if they
are called by the wrong Client type.

● gameStart no longer lets players return ERROR_REJECTED, since this was
complicated.

● Players can now forfeit the game by sending MOVE_FORFEIT via getMove
● disconnect now requires that the server closes the client’s sockets
● Further clarify timeout handling

Code:
● Remove “release” from package name for some files
● Add new MOVE_FORFEIT move type for getMove() to let players forfeit the game

Version 2.2
● There is a new gameOver error code, PLAYER_FORFEIT. PLAYER_TIMEOUT and

PLAYER_DISCONNECT have been folded into this. PLAYER_FORFEIT is sent
whenever a player explicitly forfeits, times out, or disconnects.

● INVALID_USER in MessageProtocol.java has been removed
● ERROR_REJECTED is now explicitly mentioned for each message that needs it, and

the behaviour for that is clarified
● If a player replies to a getMove with a MOVE_FORFEIT, there is no makeMove

broadcast made - instead, a gameOver is sent with the PLAYER_FORFEIT error code.
Similar behaviour applies for illegal moves and Ko rule violations.

● Players cannot waitForGame multiple times. If they attempt to wait while already waiting
in a game, or while in a game, the response should be ERROR_REJECTED.

● Timeout behaviour has been further clarified (again)

