
CS162 Fall 2011 - Project 3
Cloud Computing Go Server

(Specification Version 1.3)

Instructors: Anthony D. Joseph and Ion Stoica

Introduction
Project 3 introduces a number of new concepts that are presented as additions to your Project 2
Go Server.

First, a major part of the project is learning how to effectively use a public cloud computing
service, in this case the Amazon Elastic Compute Cloud (EC2).1 With luck, your socket-based
Project 2 code will work unmodified when running the clients and server on different EC2
machines, but this - effectively using and running code on EC2 - is a stated requirement for
Project 3. The difficulty here stems from learning to create and manage EC2 virtual machine
instances, using the command line, and working with remote servers with tools like bash, ssh,
screen, vim (or emacs, if you are so inclined), and the like. Please read the EC2 sections of
this document carefully, especially our notes on EC2 billing and how to avoid incurring large
charges.

Another major concept introduced in Project 3 is the use of a database and SQL. This takes
the form of a database maintained by the GameServer, which represents a consistent view
of the global state of the system. Having state durably and consistently stored enables fault
tolerance in the system, something especially important in a distributed cloud environment. The
GameServer is able to recover the state of ongoing games and connected clients using the
database, even in the case of GameServer failures. Clients can reconnect to the GameServer,
set their state accordingly, and resume playing or observing games. The challenges here are
manifold. There is some overhead to learning to use the Java Database Connectivity (JDBC)
2 API and writing SQL to query and modify the database. The rest is understanding how to
correctly use transactions to implement a recovery protocol.

The final component of Project 3 is secure authentication. This will involve a “hash and salt”3
method to avoid sending or storing passwords in plaintext. We will be using SHA-256 for
hashing, which is part of the SHA-2 family of cryptographic hash functions. The salient aspects
here are adhering to the hashing and salting scheme specified, and understanding the efficacy
of this scheme.

1 http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud

2 http://www.oracle.com/technetwork/java/javase/jdbc/index.html

3 http://en.wikipedia.org/wiki/Salt_(cryptography)

Overall Requirements
Unless otherwise specified, all requirements from Project 1 and Project 2 regarding Go rules
and timeout behavior carry over to Project 3. Some protocols have been updated to reflect new
requirements for secure authentication and support for database logging.

More detail to follow, but at a high level:

● Your system must work across multiple computers and wide-area networks.
● The server may fail at any time and players must be able to resume their game from the

same state at a later time when the server has restarted. Recovery is not required for
observers.

● Clients can now register with the GameServer with a password and subsequently log in
to the server using that password. Clients should only ever need to register once with
the system, but can change their password any number of times.

● Client names should be unique in the system. There should be only one client with a
given name registered at a given time.

● Passwords should never be stored or sent in plaintext.
● All clients must be authenticated before they can play in or observe games.

Authentication is now part of the connect message.
● The GameServer now maintains a database containing tables for clients, games, and

moves. The database will be used for authentication and recovery, and will only be
updated by the GameServer.

EC2
Amazon EC2 is a cloud service that lets users start and stop virtual servers on demand,
termed “instances”. These instances are based off a virtual machine image that can be
specified, termed an Amazon Machine Image (AMI). You are given full and complete access
to your instance (meaning root access), but since it is a virtualized platform, you might still
be sharing physical resources with other EC2 users. We are using “small” EC2 instances,
which means that the level of hardware multiplexing is pretty high, but enough for the minimal
requirements of our Go server and clients.

CS162 has been granted a single “master” EC2 account, from which we are spinning
off “subaccounts” for each student. To make this work, we’ve written a number of scripts that
reside on stella.cs.berkeley.edu, which allow you to start, stop, and otherwise manage
your own instances through this master EC2 account. These scripts will also provide you with
SSH keys that will allow you to log into instances that you start. You must use this SSH key to
login to your EC2 instances. Password SSH access is not enabled. A more detailed description
of how to use these scripts follows under “Using Our EC2 Scripts”.

All of the CS162 instances that are started will be based off of a slightly customized AMI, which
has important packages like svn, javac, vim, and screen installed. Some familiarity with
command line tools is necessary to interact with your machines. You need to be able to run
Java programs on the command line. You are also given root access through sudo on your

own instances, so you can install additional packages and otherwise configure your instance
however you wish.

Email cs162 if you have any suggestions for other packages that would be nice to have included
in the base AMI. Student subaccounts cannot roll their own AMIs, but we are definitely open to
suggestions on how the base one can be improved.

Operational notes
Another word on EC2 terminology. Instances can be launched, started, stopped, and
terminated. Here is a summary of what these operations mean:

● Launch: start a brand new instance based on an AMI
● Stop: pause a running instance, shutting it down but saving local changes
● Start: unpause a previously stopped instance, recovering the saved state
● Terminate: stop an instance and throw away local changes. Have to launch a new AMI.

This means that if you copy your code over, work on it a bit, stop it when you’re done, then
start it back up again later, your code will still be there on the instance. If you terminate the
instance, this completely wipes the instance, and you cannot recover any changes you made.
Terminating an old instance and launching a fresh instance based on the base AMI is a good
way of resetting everything, if you have really messed up the instance somehow.

Using our EC2 scripts
To run our scripts, you must be SSH-ed into stella.cs.berkeley.edu.

Follow these steps to set up your account to run EC2 instances:

1. SSH into stella.cs.berkeley.edu using your class login account.
2. Run /var/tmp/cs162/bin/ec2_monitor --init. This command will create an SSH

key pair for you and add a .pem file to your home directory. You should only need to run
--init once per class login account, but if you accidentally delete your .pem file, you
can run --init again to restore it.

Once you have taken these steps, you are now ready to manage EC2 instances using your
account. Each member of your group can register and manage instances independently. All
management will be done using the /var/tmp/cs162/bin/ec2_monitor script.4

The --help command will show you how to use the script. Options are:

-h, --help Show this help message and exit.

4 You may want to edit your $PATH in .bash_profile to include /var/tmp/cs162/bin/, but only do this
if you are sure of what you are doing.

-i, --init Initialize your class EC2 account. Run once.

-l, --list List instances that you have access to.

-a, --launch Launch a new instance.

-s STOP, --stop=STOP Stop a running instance.

-S, --stop-all Stop all running instances.

-r RESUME, --resume=RESUME Resume a stopped instance.

-R, --resume-all Resume all stopped instances.

-t TERMINATE, --
terminate=TERMINATE

Terminate a running or stopped instance.

-T, --terminate-all Terminate all of your instances.

The --list option will only show instances that you have launched and not yet terminated. Any
stopped instances appearing in this list may be resumed using the --resume= option with the
Instance ID of the instance you wish to resume. Options for stopping and terminating instances
follow a similar pattern.

To manage a particular running instance, obtain the instance’s hostname by using the --list
option. You can then SSH into that instance by running the following command:

ssh -i <keyfile> ec2-user@<hostname>

where <keyfile> is the filename of the .pem file created when you ran --init, and
<hostname> is the instance’s hostname.

Also note that it can take a minute or two to do these operations. Give the instance a minute or
two to boot before deciding you can’t SSH in.

Here is a a short example sequence of commands to ec2_monitor, in which we list instances,
resume a stopped instance, and login to it.

stella [501] ~ # /var/tmp/cs162/bin/ec2_monitor -l
Instance ID State Uptime Hostname
i-9d840efe stopped 45:26

In this example, instance i-9d840efe is stopped, so we first resume it.

stella [508] ~ # /var/tmp/cs162/bin/ec2_monitor -r i-9d840efe
Attempting to resume instance i-9d840efe...
Done

We allow a minute or two after seeing this output for Amazon Web Services to actually get the
instance back up. We then verify that it is running.

stella [510] ~ # /var/tmp/cs162/bin/ec2_monitor -l
Instance ID State Uptime Hostname
i-9d840efe running 00:00 ec2-107-22-0-156.compute-
1.amazonaws.com

Its hostname is ec2-107-22-0-156.compute-1.amazonaws.com. We proceed to login to it.

stella [511] ~ # ssh -i cs162-kl-default.pem ec2-user@ec2-107-22-0-
156.compute-1.amazonaws.com

EC2 billing
Using EC2 costs money. We have been allocated enough EC2 credit that this should not be a
problem, but we are depending on all of you to be responsible with your usage. This basically
boils down to not starting a large number of instances and then leaving them on overnight when
you’re not using them, but let us break it down a little further

Instances are charged at an hourly rate while they are started. The minimum charge per
instance is also a single hour. Instances incur negligible cost when they are stopped, and zero
cost after they have been terminated. This means a few simple rules can keep our costs in line
and everyone happy:

● Do not start a large number of instances. 2-5 is okay, 20 is not. We will not be testing
with 20 instances, and it is rather unnecessary.

● Do not leave instances on when you are not using them. Stop them if you care about
state, or just terminate and blow them away.

● Make sure your instances are stopped or teminated before logging off. It takes
some time.

● Do not start and stop instances frequently in a short timespan. Every time you start
an instance, it charges a minimum of 1 hour of usage, so this behavior can become
expensive quickly.

We are also considering providing accounting scripts to help you monitor your own usage, or
configuring instances to automatically stop themselves after a few hours to prevent any “I forgot
and left for the weekend” type situations. However, strict enforcement and budgeting should not
be necessary as long as everyone is careful about their usage.

Hello World Assignment
To get you started with EC2, you will be running a simple Hello World program on an EC2
instance. You must have this assignment completed by 11/17 at 5:00pm along with your initial
design doc. You will be submitting a screenshot of your HelloWorld output as HelloWorld.jpg
with your design doc using the command submit proj3-initial-design. The idea behind
this assignment is to make sure you and your group have the basics down early and will be able
to run your GameServer and client code on EC2 when you are ready to test it.

http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com
http://ec2-107-22-0-156.compute-1.amazonaws.com

We have provided code for a simple Hello World program in edu/berkeley/cs/cs162/
HelloWorld.java. Your job will be to move HelloWorld onto your EC2 instance, run it, take a
screenshot of your shell with the HelloWorld output, and save it as HelloWorld.jpg. You will
know your HelloWorld has successfully run if it prints Hello World! to the console. Please
refer to the “Using EC2 Effectively” section at the end of this document for more information
about how to run programs on EC2.

Secure Authentication
In this project, you will modify your GameServer to enforce secure user authentication.
The GameServer will have a database of valid clients and passwords, specified in the
section “Database Schema”. To establish a connection, the server and client must adhere to the
following protocol:

1. As part of the connect message, the client sends the server a SHA-256 hash of their
password.

2. Upon receiving this, the server concatenates with it a salt, and computes a SHA-256
hash of the resulting string.

3. If this matches the value stored in the database, the server authenticates the client.
Otherwise, the client is denied.

We define the salt to be the string “cs162project3istasty” without quotes. The server should
use this value of the salt for all clients’ passwords.

Once authenticated and connected, clients may also choose to change their password at any
time by sending the server a changePassword message with a hash of their proposed new
password. Once a client’s password has been changed, that client should no longer be able
to authenticate using its previous password; subsequent connect messages must include the
hash of the new password in order to be authenticated properly. Clients should only be able to
change their own passwords.

New clients should also be able to register themselves with the server, using the register
message. The register message includes their name and type (a ClientInfo parameter),
and a SHA-256 hash of their proposed password. Client names should be unique in the system.
The server should then update the clients table in the database as necessary, and the client
should subsequently be able to authenticate using a connect message, and change their
password with the changePassword message if they so desire.

It will be helpful to refer to the java.security.MessageDigest API for details on how to
compute hashes. The MessageDigest methods you will be using require byte arrays as input;
String.getBytes() should be useful for this. Strings should be converted to bytes using UTF-
16 encoding, the same encoding that Java uses internally.

Here is a complete example of how we expect you to hash and salt passwords. Suppose our
password, in plaintext, is “plainTextPassword”:

1. We convert it to byte[] using the UTF-16 character set and convert
to hex, resulting in the following hash:
01faa5e19c568a4a322c8a1ee53d747c64e9e960f68bad74b5235425fe799029.

2. We append the salt, convert to byte[] again using UTF-16, compute
the SHA-256 hash, and convert to hex, resulting in the following hash:
b1b216d0522b7f5f841b1f5cbd8e5d86ba808a81f5e37826f28bf12dc53fe5ee

For details on the exact parameters and expected responses for the messages used in
the authentication protocol, see sections “Client-to-server messages” and “Server-to-client
messages”.

Database Schema
For this project, we will be using SQLite, a small, free, embeddable database with wrappers
provided by many languages. Java has a unified database interface (JDBC) that is interoperable
with SQLite: SQLiteJDBC5. We are standardizing on the most recent version, v056.

Your SQLite database file should be named “cs162-project3.db” without quotes. This is
necessary to standardize for testing purposes. You should expect this file to be in the
GameServer’s current working directory. This means that you should be opening database
connections as follows:

Connection conn = DriverManager.getConnection("jdbc:sqlite:cs162-
project3.db");

The GameServer is expected to check for the existence of the database file. If it exists and the
tables exist, it should load state from the database. Otherwise, it should create this file, along
with the tables specified here.

The GameServer will store client data, game data, and game moves in the database. The tables
should adhere to the schema we’re specifying here. Bold headers are the name of the table,
and each bullet point is a column in the table.

clients
● int clientId primary key
● text name unique not null
● int type not null
● text passwordHash not null

games

5 http://www.zentus.com/sqlitejdbc/

http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/
http://www.zentus.com/sqlitejdbc/

● int gameId primary key
● int blackPlayer foreign key (clients.clientId) not null
● int whitePlayer foreign key (clients.clientId) not null
● int boardSize not null
● real blackScore
● real whiteScore
● int winner foreign key (clients.clientId)
● int moveNum not null
● int reason

moves
● int moveId primary key
● int clientId foreign key (clients.clientId) not null
● int gameId foreign key (games.gameId) not null
● int moveType not null
● int x
● int y
● int moveNum not null

captured_stones
● int stoneId primary key
● int moveId foreign key (moves.moveId)
● int x
● int y

The various primary key id fields (clientId, gameId, moveId, stoneId) will auto-increment
as new rows are added, and are used internally to specify relationships between rows. They
are not exposed externally to clients. We have also specified foreign key relationships between
clients, moves, and games, as well as some additional constraints (not null, unique). This
schema is not to be modified; if you have a good reason why something should be changed or a
question about what something is for, talk to a member of the teaching staff.

Note that there are relationships across rows in some of these tables. For instance,
games.moveNum needs to be incremented each time a new row is added to the moves table
that references that game. captured_stones rows should also be added together with the
moves row that caused them. These atomic operations have to be implemented with database
transactions to maintain consistency; simple application-level locking is not sufficient in the
presence of failures.

In general, all state should be written synchronously to the database before it is externalized to
clients. In other words, commit the results of a getMove before sending out makeMove and/or
gameOver messages.

● games.blackScore and games.whiteScore are set only when the game is finished.
● games.blackScore and games.whiteScore should be set according to Rules.java in

the case of GAME_OK. For other cases (forfeit), the winner’s score should be set to 1, and
the loser’s score to 0.

● games.reason is null while the game has been started, and not ended. When the

game finishes, it’s set to the same reason code sent out by gameOver, as defined in
MessageProtocol.java when the game finishes.

● games.winner is null while the game is in progress, and is set when the game ends.
There are no ties in Go.

● moves.moveNum is set to 1 for the first move in a game. Each subsequent move in the
game increases its moveNum by 1.

● games.moveNum is set to the highest move.moveNum of moves related to that game. It is
set to 0 initially.

● moves.x and moves.y should be set to -1 for moves that are not a MOVE_STONE.

Fault-tolerance and Recovery

Because the GameServer stores all game state in the database, it is possible to resume playing
a game even after GameServer failure. This is done by loading all the state from the database
upon startup. Here, we are specifically targeting the situation of GameServer failure and restart.
Client timeouts and failures are still handled by the GameServer as in Project 2: forfeiture,
closing sockets, and cleaning up state.

Clients now have to attempt to retry connecting to the GameServer if they experience a timeout
or socket close. Since they have to reestablish both of their paired sockets and re-authenticate,
clients should essentially reset their local state and attempt to 3-way handshake and re-
authenticate via a connect message.

Immediately upon recovery, the GameServer will construct a list of partially played games.
The GameServer must not accept connections until this list has been constructed. The
GameServer persists this list of partially played games indefinitely, waiting for both Players
to rejoin and resume playing. If only a single Player manages to reconnect, the GameServer
should start a one minute timer when the first player succeeds in rejoining the server and doing
a waitForGame. If the second player does not succesfully rejoin and waitForGame within this
one minute, it is treated as a forfeit, and the first Player is the winner. The game is now over and
the GameServer may treat it as a completed game.

However, if the connected player disconnects before the second player does a waitForGame
and before a minute has passed, the game remains partially played. The one minute timer will
be reset and restarted the next time a player in the partially played game does a waitForGame.
Players are forced to complete any of their partially played games before playing in another
game. Once a partially played game has resumed, they must either play the game to completion
or forfeit if they wish to move on to another game immediately.

Observer state is not saved by the GameServer, so their behavior on reconnect is no different
from behavior on the initial connection. They are forced to again listGames and rejoin any
games they wish to observe. listGames should only return the games that are currently active
with both players connected, so that observers can only observe games which have both
players present.

Client-Server Protocol
We are using the same protocol as in Project 2. Unless otherwise stated, all serialization and
deserialization is performed exactly the same way as defined in the latest version of the Project
2 specification.

Note that there is no specific name field in the database schema for storing games - you should
set each game’s name (in its GameInfo object) to be its gameId, as automatically assigned by
the database, in string form. This will allow each game to have a unique name the server can
identify it with.

The list of messages and their parameters has been updated to account for the additional
requirements in this project. All messages are synchronous except disconnect, which does not
expect a reply.

Client-to-Server Messages
Opcode Parameters Reply Description

register ClientInfo
player, String
passwordHash

STATUS_OK
-or-
ERROR_REJECTED

Registers the client
with the game server.
passwordHash is the SHA-
256 hash of their proposed
password.

ERROR_REJECTED is
returned if a client with
the same name is already
registered, or if register
is sent at any point after a
connect, such as during a
game.

changePassword ClientInfo
player, String
newPasswordHash

STATUS_OK
-or-
ERROR_UNCONNECTED

Notifies the server that
the client would like to
change its password.
newPasswordHash is the
SHA-256 hash of their
proposed new password.

ERROR_UNCONNECTED is
returned if the player has
not yet sent a connect
message.

ERROR_REJECTED is
returned if the player sends

a ClientInfo that does
not match the one they
connected with.

connect ClientInfo
player, String
passwordHash

STATUS_OK
-or-
ERROR_REJECTED
-or-
ERROR_BAD_AUTH

Connects to the game
server. The given
password must be the
correct password for the
player for the connection to
be established.

ERROR_REJECTED is
returned if an already
connected client tries to
connect again.

ERROR_BAD_AUTH is
returned if a client attempts
to connect with an invalid
password or if the client is
not registered.

disconnect Asynchronous. No
expected reply.

Disconnects from the
game server. If a Player
calls this, they forfeit the
game they are playing. If
an Observer calls this, they
leave all games they are
observing. After this, the
server must close down the
Client’s sockets.

waitForGame STATUS_OK
-or-
STATUS_RESUME,
GameInfo game,
BoardInfo board,
ClientInfo
blackPlayer,
ClientInfo
whitePlayer
-or-
ERROR_UNCONNECTED
-or-
ERROR_REJECTED

For players. Signals that
the player wants to play in
the next game created.

STATUS_RESUME is returned
if the player has an
unfinished game that they
still need to complete. All
necessary information
needed to continue the
game is also sent back in
the response.

ERROR_UNCONNECTED is
returned if the player has
not yet sent a connect
message.

ERROR_REJECTED is
returned if an Observer
sends this message, or
a Player calls this when
already waiting or when in
a game.

listGames STATUS_OK,
[GameInfo g1,
GameInfo g2, ...]
-or-
ERROR_UNCONNECTED
-or-
ERROR_REJECTED

For observers. Lists the
games in progress that the
observer can watch.

ERROR_REJECTED is
returned if a Player sends
this message.

join GameInfo game STATUS_OK,
BoardInfo board,
ClientInfo
blackPlayer,
ClientInfo
whitePlayer
-or-
ERROR_INVALID_GAME
-or-
ERROR_UNCONNECTED
-or-
ERROR_REJECTED

For observers. Tells the
server that the observer
wants to join the given
game.

ERROR_REJECTED is
returned if a Player sends
this message.

leave GameInfo game STATUS_OK
-or-
 ERROR_INVALID_GAME
-or-
ERROR_UNCONNECTED
-or-
ERROR_REJECTED

For observers. Tells the
server that the observer
wants to leave the given
game. After this, the server
should send at most one
more message related to
that game to the observer.
This allows the message
currently being sent to be
flushed.

ERROR_REJECTED is
returned if a Player sends
this message.

Server-to-Client Messages
Opcode Parameters Reply Description

gameStart GameInfo game, STATUS_OK Tells two players that they

BoardInfo
board,
ClientInfo
blackPlayer,
ClientInfo
whitePlayer

are playing against each
other in a new game.

blackPlayer is assigned
as the black player, and
moves first.

whitePlayer is the white
player.

board is the initial board.
The server picks the size,
and clients should be able
to handle any size between
3 and 19.

Observers may also
receive this message, if
they join after a game is
created, but before it’s
started.

gameOver GameInfo game,
double
blackScore,
double
whiteScore,
ClientInfo
winner,
byte reason

Extra error
parameters:
ClientInfo
player,
String errorMsg

STATUS_OK Broadcasts that a game is
over.

winner is the winner of the
game.

reason is either GAME_OK,
or if the game ended
because of a player error.
The possible values for
reason are specified in
MessageProtocol.java.

 If reason is an error
(that is, not GAME_OK),
the optional extra
parameters indicate
the player response for
the error, along with a
human-readable string
that provides the error
message.

makeMove GameInfo game,
ClientInfo
player,
byte moveType,
Location loc,

STATUS_OK Broadcasts that player
placed a stone at loc.
There is a moveType
parameter (MOVE_STONE,

[Location
capturedStone1,
Location
capturedStone2,
…]

MOVE_PASS), and a list
of Locations of stones
captured by the move.

This is followed by a
getMove to the player
whose turn it is next.

getMove STATUS_OK,
byte moveType,
Location loc

The server sends this to a
specific player to request a
move.

Players respond with a
moveType and a location.

Specific timeouts need to
be enforced for players to
reply to getMove. Please
refer to the latest version of
the Project 2 specification.

Design Document

Your design document should include, at a minimum, the following non-exhaustive list of items:

● A description of how and when you save state in the GameServer’s database. This
should include some discussion of transactions, synchronization, connections, and
demonstrative code for saving a new move in the database (including actual SQL
statements).

● A diagram of the four tables in the GameServer’s database and the relationships
between them.

● A description of the changes you will be making to your GameServer, with emphasis
on dealing with the database, implementing authentication, and implementing fault
tolerance.

● A description of the changes you will be making to your clients, again with emphasis on
the changes you will need to ensure correct behavior in the instance of GameServer
failure.

● A state diagram depicting the behavior of a new player registering with the GameServer
and authenticating. Transitions between states should be the messages and responses
specified in the protocol section. Include initial and termination states.

● A description of why the hashing and salting scheme specified is a relatively secure way
of sending and storing passwords. Please make sure to analyze both strengths and
weaknesses of the system in your description.

● An testing plan that covers the essential classes and different aspects of system
behavior. This means both unit tests and integration tests.

Hints
Using EC2 Effectively

● When working remotely, at some point you will probably want to start a session, run
some commands, log out, and resume the same session again later. screen is a useful
tool for this purpose, and we recommend that you learn how to use it for this project.
Here is a very simple tutorial on how to use screen and which commands are most
important to know: http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/

Specification Changelog

Version 1.0
● Initial release

Version 1.1
● Updated “EC2” section with information about and directions to using our scripts to

manage EC2 instances. Added new sub-section “Using Our EC2 Scripts”.
● Updated schema for the clients table. Specifically, changed “text password not

null” to “text passwordHash not null”, in order to make it clearer that the password
should never be stored as plaintext.

● Fixed a typo with listing the primary key fields that auto-increment, under “Database
Schema”. Now it is specified that “(clientId, gameId, moveId, stoneId) will auto-
increment as new rows are added”.

● Added a clarification about game names under “Client-Server Protocol”. Each game’s
name should be set to its gameId (automatically assigned by the database), as a string.

● Updated the register message, specifying that ERROR_REJECTED is also sent if register
is sent at any point after a connect, such as during a game.

● Clarified that ASCII should be used for encoding characters when converting strings to
byte arrays under the section “Secure Authentication”.

Version 1.2
● Fixed a typo in the “Design Document” section referring to “three tables”. It now

says “four tables”.
● AMI changes made: ports 30000-65535 have been opened, additional requested

packages have been installed, and error with permissions on JAR files fixed.
● Database file location now clearly specified: it should be in the Server package.
● Specified that the database should be created by the GameServer if it does not exist; if it

does, it should be read from to look for unfinished games etc.
● Specified that the results of a getMove should be committed to the database before state

is externalized to clients: that is, before makeMoves and/or gameOvers.
● Clarified what should happen in the case that a player disconnects within the one minute

http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/

alloted for a second player to reconnect to continue a partially played game under “Fault
Tolerance and Recovery”. Players cannot explicitly forfeit a partially played game until
both players have reconnected and the game has resumed.

● Minor change to design document requirements. Requirements now explicitly ask you to
analyze both the strengths and weaknesses of our security and authentication scheme.

Version 1.3
● Specified that when a changePassword is sent, the ClientInfo parameter passed must

match that used by the client used to connect. ERROR_REJECTED is to be sent by the
server if it does not.

● Specified the exact command used to initiate a database connection, to make it clear
that the database should live in the GameServer’s current working directory - a change
from the Server/ directory previously specified.

● Changed encoding for strings to be used for hashing to UTF-16 from ASCII. This is to
keep consistency with Java’s internal string encoding, and with how strings are presently
encoded on the wire.

● Added a sample hash-and-salt sequence, with hash values, to make it clear how
passwords should be hashed. Conversion to hex is specified for hashes.

● Specified that the one minute reconnection timer is to begin when players send a
waitForGame, and not upon their sending a connect.

● Specified that observers only get to observe games that have both players. listGames
should only return games that are actually active - that is, have both players present.

