
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 4  
 

Synchronization, Atomic operations,
Locks"

September 10, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 4.2!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Goals for Today"

•  Concurrency examples and sharing!

•  Synchronization!

•  Hardware Support for Synchronization!
!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated by Kubiatowicz."

Lec 4.3!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Don’t hand out too much money!

Lec 4.4!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

ATM bank server example"
•  Suppose we wanted to implement a server process to

handle requests from an ATM network:!
!BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}
 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}
 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

•  How could we speed this up?!
– More than one request being processed at once!
– Multiple threads (multi-proc, or overlap comp and I/O)!

Page 2

Lec 4.5!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Can Threads Help?"
•  One thread per request!!

•  Requests proceeds to completion, blocking as required:!
 Deposit(acctId, amount) {
 acct = GetAccount(actId); /* May use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance
 load r1, acct->balance
 add r1, amount2
 store r1, acct->balance
 add r1, amount1
 store r1, acct->balance

Lec 4.6!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesn’t matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
! !x = 1; !!
! ! x = y+1; !!

 y = 2;!
 y = y*2!

x=13"

Lec 4.7!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesn’t matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
!! y = y*2; !!

 x = 1;!
 x = y+1;!

x=5"

Lec 4.8!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesn’t matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
! ! x = 1; !!

 x = y+1;!
 y= y*2;!

x=3"

Page 3

Lec 4.9!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

•  Threaded programs must work for all interleavings of thread
instruction sequences!

– Cooperating threads inherently non-deterministic and non-
reproducible!

– Really hard to debug unless carefully designed!!
•  Example: Therac-25!

– Machine for radiation therapy!
»  Software control of electron  

accelerator and electron beam/ 
Xray production!

»  Software control of dosage!
– Software errors caused the  

death of several patients!
»  A series of race conditions on  

shared variables and poor  
software design!

»  “They determined that data entry speed during editing was the
key factor in producing the error condition: If the prescription data
was edited at a fast pace, the overdose occurred.”!

Correctness Requirements"

Lec 4.10!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use

of hardware clock!
– Bug not found during extensive simulation!

PASS

BFS

Lec 4.11!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Atomic Operations"
•  To understand a concurrent program, we need to know what

the underlying atomic operations are!!
•  Atomic Operation: an operation that always runs to completion

or not at all!
–  It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle!
– Fundamental building block – if no atomic operations, then have

no way for threads to work together!

•  On most machines, memory references and assignments (i.e.
loads and stores) of words are atomic!

•  Many instructions are not atomic!
– Double-precision floating point store often not atomic!
– VAX and IBM 360 had an instruction to copy a whole array!

Lec 4.12!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Concurrency Challenges"
•  Multiple computations (threads) executing in parallel to !

– share resources, and/or!
– share data!

•  Fine grain sharing: !
⇑  increase concurrency à better performance!
⇓  more complex!

•  Coarse grain sharing:!
⇑  Simpler to implement!
⇓  Lower performance!

•  Examples:!
•  Sharing CPU for 10ms vs. 1min!
•  Sharing a database at the row vs. table granularity!

Page 4

Lec 4.13!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Motivation: “Too much milk”"
•  Great thing about OS’s – analogy between

problems in OS and problems in real life!
– Help you understand real life problems better!
– But, computers are much stupider than people!

•  Example: People need to coordinate:!

Arrive home, put milk away"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"

Lec 4.14!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Definitions"
•  Synchronization: using atomic operations to ensure

cooperation between threads!
– For now, only loads and stores are atomic!
– We’ll show that is hard to build anything useful with only

reads and writes!

•  Critical Section: piece of code that only one thread can
execute at once!

•  Mutual Exclusion: ensuring that only one thread executes
critical section!

– One thread excludes the other while doing its task!
– Critical section and mutual exclusion are two ways of

describing the same thing!

Lec 4.15!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

More Definitions"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
•  Example: fix the milk problem by putting a lock on refrigerator!

– Lock it and take key if you are going to go buy milk!
– Fixes too much (coarse granularity): roommate angry if only

wants orange juice!

!
– Of Course – We don’t know how to make a lock yet!

#$@%@#$@

Lec 4.16!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk: Correctness Properties"
•  Need to be careful about correctness of concurrent

programs, since non-deterministic!
– Always write down desired behavior first!
–  Impulse is to start coding first, then when it doesn’t work,

pull hair out!
–  Instead, think first, then code!

•  What are the correctness properties for the “Too much
milk” problem?!

– Never more than one person buys!
– Someone buys if needed!

•  Restrict ourselves to use only atomic load and store
operations as building blocks!

Page 5

Lec 4.17!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk: Solution #1"
•  Use a note to avoid buying too much milk:!

– Leave a note before buying (kind of “lock”)!
– Remove note after buying (kind of “unlock”)!
– Don’t buy if note (wait)!

•  Suppose a computer tries this (remember, only memory read/
write are atomic):!

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

•  Result? !

Lec 4.18!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk: Solution #1"
•  Still too much milk but only occasionally!!
 Thread A Thread B
 if (noMilk)
 if (noNote) {
 if (noMilk)
 if (noNote) {
 leave Note;

 buy milk;
 remove note;
 }
 }!
 leave Note;

 buy milk;
 …
•  Thread can get context switched after checking milk and note

but before leaving note!!
•  Solution makes problem worse since fails intermittently!

– Makes it really hard to debug…!
– Must work despite what the thread dispatcher does!!

Lec 4.19!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk: Solution #1½ "
•  Clearly the Note is not quite blocking enough!

– Let’s try to fix this by placing note first!
•  Another try at previous solution:!
!

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

•  What happens here?!
– Well, with human, probably nothing bad!
– With computer: no one ever buys milk!

Lec 4.20!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk Solution #2"
•  How about labeled notes? !

– Now we can leave note before checking!

•  Algorithm looks like this:!
!!
! !Thread A ! !Thread B!
 leave note A; leave note B;

 if (noNote B) { if (noNote A) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

•  Does this work?!

Page 6

Lec 4.21!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk Solution #2"
•  Possible for neither thread to buy milk!!
! ! !Thread A ! !Thread B!
 leave note A;
 leave note B;

 if (noNote A) {
 if (noMilk) {
 buy Milk;
 }
 }

 if (noNote B) {
 if (noMilk) {
 buy Milk;
 …
 remove note B;!
•  Really insidious: !

– Unlikely that this would happen, but will at worse possible
time!

Lec 4.22!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk Solution #2:
problem!"

•  I’m not getting milk, You’re getting milk!
•  This kind of lockup is called “starvation!”!

Lec 4.23!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Review: Too Much Milk Solution #3"
•  Here is a possible two-note solution:!
! ! !Thread A ! !Thread B!
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;!

•  Does this work? Yes. Both can guarantee that: !
–  It is safe to buy, or!
– Other will buy, ok to quit!

•  At X: !
–  if no note B, safe for A to buy, !
– otherwise wait to find out what will happen!

•  At Y: !
–  if no note A, safe for B to buy!
– Otherwise, A is either buying or waiting for B to quit!

Lec 4.24!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Page 7

Lec 4.25!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Review: Solution #3 discussion"
•  Our solution protects a single “Critical-Section” piece of code

for each thread:!
 if (noMilk) {
 buy milk;

 } !
•  Solution #3 works, but it’s really unsatisfactory!

– Really complex – even for this simple an example!
» Hard to convince yourself that this really works!

– A’s code is different from B’s – what if lots of threads?!
» Code would have to be slightly different for each thread!

– While A is waiting, it is consuming CPU time!
»  This is called “busy-waiting”!

•  There’s a better way!
– Have hardware provide better (higher-level) primitives than

atomic load and store!
– Build even higher-level programming abstractions on this new

hardware support!
Lec 4.26!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

High-Level Picture"
•  The abstraction of threads is good:!

– Maintains sequential execution model !
– Allows simple parallelism to overlap I/O and computation!

•  Unfortunately, still too complicated to access state shared
between threads !

– Consider “too much milk” example!
–  Implementing a concurrent program with only loads and stores

would be tricky and error-prone!
•  We’ll implement higher-level operations on top of atomic

operations provided by hardware!
– Develop a “synchronization toolbox”!
– Explore some common programming paradigms!

Lec 4.27!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Too Much Milk: Solution #4"
•  Suppose we have some sort of implementation of a lock

(more in a moment). !
– Lock.Acquire() – wait until lock is free, then grab!
– Lock.Release() – unlock, waking up anyone waiting!
– These must be atomic operations – if two threads are waiting

for the lock, only one succeeds to grab the lock!

•  Then, our milk problem is easy:!
! milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

•  Once again, section of code between Acquire() and
Release() called a “Critical Section”!

Lec 4.28!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

How to Implement Lock?"
•  Lock: prevents someone from accessing something!

– Lock before entering critical section (e.g., before accessing
shared data)!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
»  Should sleep if waiting for long time!

•  Hardware lock instructions!
–  Is this a good idea?!
– What about putting a task to sleep?!

» How do handle interface between hardware and scheduler?!
– Complexity?!

»  Each feature makes hardware more complex and slower!

Page 8

Lec 4.29!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

•  How can we build multi-instruction atomic operations?!
– Recall: dispatcher gets control in two ways. !

»  Internal: Thread does something to relinquish the CPU!
»  External: Interrupts cause dispatcher to take CPU!

– On a uniprocessor, can avoid context-switching by:!
»  Avoiding internal events (although virtual memory tricky)!
»  Preventing external events by disabling interrupts!

•  Consequently, naïve Implementation of locks:!
! !LockAcquire { disable Ints; }
 LockRelease { enable Ints; }!

Naïve use of Interrupt Enable/Disable"

Lec 4.30!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

•  Can’t let user do this! Consider following:!
 LockAcquire();
While(TRUE) {;}

•  Real-Time system—no guarantees on timing! !
– Critical Sections might be arbitrarily long!

•  What happens with I/O or other important events? !!
–  “Reactor about to meltdown. Help?”!

Naïve use of Interrupt Enable/Disable:
Problems"

Lec 4.31!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Better Implementation of Locks by Disabling
Interrupts"

•  Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable!

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.32!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

New Lock Implementation: Discussion"
•  Disable interrupts: avoid interrupting between checking and

setting lock value!
– Otherwise two threads could think that they both have lock!

!
•  Note: unlike previous solution, critical section very short!

– User of lock can take as long as they like in their own critical
section!

– Critical interrupts taken in time!

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Critical
Section

Page 9

Lec 4.33!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?!

•  Before putting thread on the wait queue?!
– Release can check the queue and not wake up thread!

•  After putting the thread on the wait queue!
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep!
– Misses wakeup and still holds lock (deadlock!)!

•  Want to put it after sleep(). But, how?!

Acquire() {  
"disable interrupts; 
"if (value == BUSY) {  
" "put thread on wait queue; 
" "go to sleep(); 
"} else {  
" "value = BUSY; 
"}  
"enable interrupts; 

}"

Enable Position"
Enable Position"
Enable Position"

Lec 4.34!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:!

– Responsibility of the next thread to re-enable ints!
– When the sleeping thread wakes up, returns to acquire and re-

enables interrupts!
 Thread A !Thread B!
 .

 .
 disable ints

 sleep
 sleep return

 enable ints
 .

 .
 .

 disable int
 sleep

 sleep return
 enable ints

 .
 .

context switch"

context 
switch"

Lec 4.35!9/10/12! Ion Stoica CS162 ©UCB Fall 2012!

Summary"
•  Important concept: Atomic Operations!

– An operation that runs to completion or not at all!
– These are the primitives on which to construct various

synchronization primitives!
!

•  Showed constructions of Locks using interrupts!
– Disabling of Interrupts!
– Must be very careful not to waste/tie up machine resources!

»  Shouldn’t disable interrupts for long!
– Key idea: Separate lock variable, use hardware mechanisms to

protect modifications of that variable!

