
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 5  
 

Semaphores, Conditional Variables"

September 12, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 5.2!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Goals for Today"
•  Atomic instruction sequence!

•  Continue with Synchronization Abstractions!
– Semaphores, Monitors and condition variables!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz."

Lec 5.3!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Atomic Read-Modify-Write
instructions"

•  Problems with interrupt-based lock solution:!
– Can’t give lock implementation to users!
– Doesn’t work well on multiprocessor!

» Disabling interrupts on all processors requires messages and
would be very time consuming!

•  Alternative: atomic instruction sequences!
– These instructions read a value from memory and write a new

value atomically!
– Hardware is responsible for implementing this correctly !

»  on both uniprocessors (not too hard) !
»  and multiprocessors (requires help from cache coherence

protocol)!
– Unlike disabling interrupts, can be used on both

uniprocessors and multiprocessors!

Lec 5.4!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Examples of Read-Modify-Write "

•  test&set (&address) { /* most architectures */
 result = M[address];
 M[address] = 1;
 return result;

}

•  swap (&address, register) { /* x86 */

 temp = M[address];
 M[address] = register;
 register = temp;

}

•  compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

}

Page 2

Lec 5.5!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Implementing Locks with test&set"

•  Simple solution:!
! !int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•  Simple explanation:!
–  If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits!
–  If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues!
– When we set value = 0, someone else can get lock!

!

test&set (&address) {
 result = M[address];
 M[address] = 1;
 return result;
}
!

Lec 5.6!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Problem: Busy-Waiting for Lock"
•  Positives for this solution!

– Machine can receive interrupts!
– User code can use this lock!
– Works on a multiprocessor!

•  Negatives!
–  Inefficient: busy-waiting thread will consume cycles waiting!
– Waiting thread may take cycles away from thread holding lock! !
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock ⇒ no progress!!
•  Priority Inversion problem with original Martian rover !
•  For semaphores and monitors, waiting thread may wait for

an arbitrary length of time!!
– Even if OK for locks, definitely not ok for other primitives!
– Homework/exam solutions should not have busy-waiting!!

Lec 5.7!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Can’t entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Note: sleep has to be sure to reset the guard variable!
– Why can’t we do it just before or just after the sleep?!

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}

Lec 5.8!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Locks using test&set vs. Interrupts"
•  Compare to “disable interrupt” solution (last lecture)!

•  Basically replace !
– disable interrupts à while (test&set(guard));
– enable interrupts à guard = 0;"

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Page 3

Lec 5.9!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Recap: Locks"
int value = 0;
Acquire() {
 // Short busy-wait time
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 // Short busy-wait time
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

If one thread in critical
section, no other
activity (including OS)
can run! !

Lec 5.10!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Recap: Locks"
int guard = 0;
int value = 0;
Acquire() {
 // Short busy-wait time
 while(test&set(guard));
 if (value == 1) {
 put thread on wait-queue;
 go to sleep()& guard = 0;
 } else {
 value = 1;
 guard = 0;
 }
}

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 guard = 0;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

int value = 0;
Acquire() {
 while(test&set(value));
}

Release() {
 value = 0;
}

Threads waiting to
enter critical section
busy-wait!

Lec 5.11!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Where are we going with
synchronization?"

•  We are going to implement various higher-level
synchronization primitives using atomic operations!

– Everything is pretty painful if only atomic primitives are load
and store!

– Need to provide primitives useful at user-level!

Load/Store Disable Ints Test&Set Comp&Swap"

Locks Semaphores Monitors Send/Receive"

Shared Programs"

Hardware"

Higher-
level "
API"

Programs"

Lec 5.12!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Semaphores"
•  Semaphores are a kind of generalized locks!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch!

Page 4

Lec 5.13!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Value=2 Value=1 Value=0

Semaphores Like Integers Except"
•  Semaphores are like integers, except!

– No negative values!
– Only operations allowed are P and V – can’t read or write value,

except to set it initially!
– Operations must be atomic!

»  Two P’s together can’t decrement value below zero!
»  Similarly, thread going to sleep in P won’t miss wakeup from V –

even if they both happen at same time!
•  Semaphore from railway analogy!

– Here is a semaphore initialized to 2 for resource control:!

Value=1 Value=0 Value=2

Lec 5.14!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Two Uses of Semaphores"
•  Mutual Exclusion (initial value = 1)!

– Also called “Binary Semaphore”.!
– Can be used for mutual exclusion:!

 semaphore.P();
 // Critical section goes here
 semaphore.V();

•  Scheduling Constraints (initial value = 0)!
– Allow thread 1 to wait for a signal from thread 2, i.e., thread 2

schedules thread 1 when a given constrained is satisfied!
– Example: suppose you had to implement ThreadJoin which

must wait for thread to terminiate:!
! !Initial value of semaphore = 0
 ThreadJoin {

 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

Lec 5.15!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Producer-consumer with a bounded buffer"

•  Problem Definition!
– Producer puts things into a shared buffer!
– Consumer takes them out!
– Need synchronization to coordinate producer/consumer!

•  Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them!

– Need to synchronize access to this buffer!
– Producer needs to wait if buffer is full!
– Consumer needs to wait if buffer is empty!

•  Example: Coke machine!
– Producer can put limited number of cokes in machine!
– Consumer can’t take cokes out if machine is empty!

Producer Consumer Buffer

Lec 5.16!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Correctness constraints for solution"

•  Correctness Constraints:!
– Consumer must wait for producer to fill slots, if empty

(scheduling constraint)!
– Producer must wait for consumer to make room in buffer, if all

full (scheduling constraint)!
– Only one thread can manipulate buffer queue at a time (mutual

exclusion)!
!
•  General rule of thumb:  

Use a separate semaphore for each constraint!
– Semaphore fullSlots; // consumer’s constraint
– Semaphore emptySlots;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Page 5

Lec 5.17!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Full Solution to Bounded Buffer"
 Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {

 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
 // more coke

}
 Consumer() {

 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;

}

Lec 5.18!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Discussion about Solution"
•  Why asymmetry?!

– Producer does: emptySlots.P(), fullSlots.V()!
– Consumer does: fullSlots.P(), emptySlots.V()

!

Decrease # of
empty slots!

Increase # of
occupied slots!

Increase # of
empty slots!

Decrease # of
occupied slots!

Lec 5.19!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Discussion about Solution"
•  Is order of P’s important?!

– Yes! Can cause deadlock!
•  Is order of V’s important?!

– No, except that it might affect
scheduling efficiency!

•  What if we have 2 producers or 2
consumers?!

– Do we need to change anything?!

Producer(item) {

 mutex.P();
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {

 fullSlots.P();
 mutex.P();
 item = Dequeue();
 mutex.V();
 emptySlots.V();
 return item;

}

Lec 5.20!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Page 6

Lec 5.21!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Motivation for Monitors and Condition
Variables"

•  Semaphores are a huge step up; just think of trying to do
the bounded buffer with only loads and stores!

•  Problem is that semaphores are dual purpose:!
– They are used for both mutex and scheduling constraints!
– Example: the fact that flipping of P’s in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?!

Lec 5.22!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Motivation for Monitors and Condition
Variables"

•  Cleaner idea: Use locks for mutual exclusion and condition
variables for scheduling constraints!

•  Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data!

– Some languages like Java provide this natively!
– Most others use actual locks and condition variables!

Lec 5.23!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

 Monitor with Condition Variables"

•  Lock: the lock provides mutual exclusion to shared data!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!
– Lock initially free!

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep!

Lec 5.24!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Simple Monitor Example"
•  Here is an (infinite) synchronized queue!
! Lock lock;

 Queue queue;

 AddToQueue(item) {

 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {

 lock.Acquire(); // Lock shared data
 item = queue.dequeue();// Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

•  Not very interesting use of “Monitor”!
– It only uses a lock with no condition variables!
– Cannot put consumer to sleep if no work!!

!

Page 7

Lec 5.25!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Condition Variables"

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep!

– Contrast to semaphores: Can’t wait inside critical section!

•  Operations:!
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. !
– Signal(): Wake up one waiter, if any!
– Broadcast(): Wake up all waiters!

•  Rule: Must hold lock when doing condition variable ops!!
!

Lec 5.26!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Complete Monitor Example (with condition
variable)"

•  Here is an (infinite) synchronized queue!
! Lock lock;

 Condition dataready;
 Queue queue;

 AddToQueue(item) {

 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {

 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }!

Lec 5.27!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Mesa vs. Hoare monitors"

•  Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:!
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
– Why didn’t we do this?!

 if (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

!
•  Answer: depends on the type of scheduling!

– Hoare-style!
– Mesa-style!

Lec 5.28!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Hoare monitors"
•  Signaler gives up lock, CPU to waiter; waiter runs

immediately!
•  Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again!
•  Most textbooks!

!
Lock.Acquire()
…
if (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Lock, CPU
Lock, CPU

Page 8

Lec 5.29!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Mesa monitors"
•  Signaler keeps lock and processor!
•  Waiter placed on ready queue with no special priority!
•  Practically, need to check condition again after wait!
•  Most real operating systems!

!
Lock.Acquire()
…
while (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Put waiting
thread on

ready queue!

schedule waiting thread!

Lec 5.30!9/12/12! Ion Stoica CS162 ©UCB Fall 2012!

Summary"
•  Locks construction based on atomic seq. of instructions!

– Must be very careful not to waste/tie up machine resources!
»  Shouldn’t spin wait for long!

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable!

•  Semaphores!
– Generalized locks!
– Two operations: P(), V()!

•  Monitors: A lock plus one or more condition variables!
– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast()

!

