CS162
Operating Systems and
Systems Programming

Lecture 7

Semaphores, Conditional Variables,
Deadlocks

September 19, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Recap: Monitors

- Monitors represent the logic of the program
— Wait if necessary

— Signal when change something so any waiting threads can
proceed

- Basic structure of monitor-based program:

lock.Acquire ()
while (need to wait) { }Checkand/or update

condvar.wait (&lock); state variables
} Wait if necessary
lock.Rlease() (release lock when waiting)

do something so no need to wait

lock.Acquire ()

condvar.signal () ; Check and/or update
state variables

lock.Release ()

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.2

Can we construct Monitors from Semaphores?

» Locking aspect is easy: Just use a mutex

- Can we implement condition variables this way?
Wait () { semaphore.P(); }
Signal() { semaphore.V(); }

* Does this work better?

Wait (Lock lock) {
lock.Release ()
semaphore.P () ;
lock.Acquire ()

4

4

}
Signal () { semaphore.V(); 1}

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.3

Construction of Monitors from Semaphores

J
* Problem with previous tr;x.con t)

— P and V are commutative — result is the same no matter what
order they occur

— Condition variables are NOT commutative
+ Does this fix the problem?

Wait (Lock lock) {
lock.Release()
semaphore.P () ;
lock.Acquire ()

4

14

}
Signal () {

1f semaphore queue 1s not empty
semaphore.V () ;

}
— Not legal to look at contents of semaphore queue

— There is a race condition — signaler can slip in after lock
release and before waiter executes semaphore.P()

» |t is actually possible to do this correctly
— Complex solution for Hoare scheduling in book

— Can you come up with simpler Mesa-scheduled solution?
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.4

C-Language Support for Synchronization

- C language: Pretty straightforward synchronization

— Just make sure you know all the code paths out of a
critical section

int Rtn () {
lock.acquire () ;

1f (error) {
lock.release () ;
return errReturnCode;

}

lock.release () ;
return OK;

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.5

C++ Language Support for Synchronization

- Languages with exceptions like C++

— Languages that support exceptions are problematic (easy to
make a non-local exit without releasing lock)

— Consider:

void Rtn () {
lock.acquire();

DoFoo () ;

lock.release () ;

}
void DoFoo () {

1f (exception) throw errException;

}

— Notice that an exception in DoFoo() will exit without releasing
the lock

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.6

C++ Language Support for Synchronization
(con’t)

- Must catch all exceptions in critical sections

— Catch exceptions, release lock, and re-throw exception:
volid Rtn () {
lock.acquire() ;

try {
DoFoo () ;

} catch (..) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}

lock.release () ;
}
void DoFoo () {

1f (exception) throw errException;

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.7

Java Language Support for Synchronization

- Java has explicit support for threads and thread
synchronization

- Bank Account example:

class Account {
private int balance;
// object constructor
public Account (int initialBalance) {
balance = i1nitialBalance;

}

public synchronized 1nt getBalance () {
return balance;

}

public synchronized void deposit (int amount) {
balance += amount;

}
}

— Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized

method

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.8

Java Language Support for Synchronization
(con’t)

- Java also has synchronized statements:

synchronized (object) {

}

— Since every Java object has an associated lock, this type of
statement acquires and releases the object’s lock on entry
and exit of the code block

— Works properly even with exceptions:

synchronized (object) {

DoFoo () ;

}
volid DoFoo () {

throw errException;

}

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.9

Java Language Support for Synchronization

(cont’d)
* In addition to a lock, every object has a single condition
variable associated with it

— How to wait inside a synchronization method of block:
» volid wait () ;
» void wait (long timeout); // Wait for timeout
» void wait (long timeout, int nanoseconds); //variant

— How to signal in a synchronized method or block:

» void notify () ; // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

— Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:
tl = time.now ()
while (!ATMRequest()) {
wait (CHECKPERIOD) ;

t2 = time.new() ;
if (t2 - tl > LONG TIME) checkMachine();

}
— Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.10

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.11

Resources

- Resources — passive entities needed by threads to do their
work _
— CPU time, disk space, memory

- Two types of resources:

— Preemptable — can take it away
» CPU, Embedded security chip
— Non-preemptable — must leave it with the thread
» Disk space, printer, chunk of virtual address space

» Critical section

- Resources may require exclusive access or may be sharable
— Read-only files are typically sharable
— Printers are not sharable during time of printing

* One of the major tasks of an operating system is to manage

resources
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.12

Starvation vs Deadlock @

« Starvation vs. Deadlock

— Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly
in use by high-priority threads
— Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

— Deadlock = Starvation but not vice versa
» Starvation can end (but doesn’t have t0)

» Deadlock can’t end without external intervention
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.13

Conditions for Deadlock
« Deadlock not always deterministic — Example 2 mutexes:

Thread A Thread B Deadlock
x.P(); v.P(); A: x.P();
y.P(); x.P<>;<B: y.P();
A: y.P();
y.V(); x.V(); B: x.P();
x.V(); v.V();

— Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)

- Deadlocks occur with multiple resources
— Means you can’t decompose the problem
— Can’t solve deadlock for each resource independently
- Example: System with 2 disk drives and two threads
— Each thread needs 2 disk drives to function
— Each thread gets one disk and waits for another one

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.14

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into

For bridge: must acquire both halves
— Traffic only in one direction at a time

— Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

— Several cars may have to be backed up
Starvation is possible

— East-going traffic really fast = no one goes west
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.15

Train Example
- Circular dependency (Deadlock!)
— Each train wants to turn right
— Cannot turn on a track segment if occupied by another train
— Similar problem to multiprocessor networks
- Ho do you prevent deadlock?
— (Answer later)

W)
- 7
N
L\
tlllll ! o!

7
\/
A\

b

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.16

Dining Philosopher Problem

Five chopsticks/Five philosopher (really cheap restaurant)
— Free for all: Philosopher will grab any one they can
— Need two chopsticks to eat
What if all grab at same time?
— Deadlock!
How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat
How to prevent deadlock?

— (Answer later)
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.17

Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource
Hold and wait

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads
No preemption

— Resources are released only voluntarily by the thread holding
the resource, after thread is finished with it

Circular wait
— There exists a set {T,, ..., T} of waiting threads

» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,

» .

» T is waiting for a resource that is held by T,

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.18

Resource-Allocation Graph

- System Model
—Asetof Threads 7, T,, .. ., T,

n
— Resource types Ry, R,, .. ., A,

CPU cycles, memory space, I/0 devices
— Each resource type R has W, instances.

— Each thread utilizes a resource as follows:

Svymbols

© ©
-]

» Request () / Use() / Release ()

- Resource-Allocation Graph:

— V is partitioned into two types:
» T={Ty, T,, ..., T}, the set threads in the system.

» R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge T;,— R,
— assignment edge — directed edge R, — T,

9/19/12 lon Stoica CS162 ©UCB Fall 2012

Lec 7.19

Resource Allocation Graph Examples
- Recall:
— request edge — directed edge T,— R,
— assignment edge — directed edge R, — T,

R, R,

I:‘3
R,
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but

No Deadlock
9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.20

5min Break

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.21

Methods for Handling Deadlocks @

- Allow system to enter deadlock and then recover
— Requires deadlock detection algorithm

— Some technique for forcibly preempting resources and/or
terminating tasks

» Deadlock prevention: ensure that system will never enter
a deadlock

— Need to monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

» Ignore the problem and pretend that deadlocks never
occur in the system

— Used by most operating systems, including UNIX

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.22

Deadlock Detection Algorithm

- Only one of each type of resource = look for loops

« More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type

[Requesty]: Current requests from thread X

[Allocg] : Current resources held by thread X
— See if tasks can eventually terminate on their own

[Avail] = [FreeResources]

Add all nodes to UNFINISHED

do {

done = true

Foreach node in UNFINISHED {
1f ([Request 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc
done = false
}
}
} until (done)

— Nodes left in UNFINISHED = deadlocked

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.23

noole:|

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3, T4}

do {
done = true

1! !‘!eques!mme| <= ‘!val‘ ! !

remove node from UNFINSHED
[Avail] = [Avail] + [Alloc
done = false

node]

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.24

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {
done = true False

Foreach node in UNFINISHED {
remove no!e !rom ”Hy‘!!!hh

[Avail] = [Avail] + [Alloc,]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.25

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

remove HO!@ !rom !!H! ‘ !!!!H!

[Avail] = [Avail] + [Alloc,,]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.26

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {
if R <=

([Request.,] [Avail]) {

}
}

} until (done)

done = false

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.27

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,,] <= [Avail]) {
remove node from UNFINSHED

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.28

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,,] <= [Avail]) {
remove node from UNFINSHED

‘Aviil| = ‘Aviil‘ + ‘Allii“

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.29

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

remove HO!@ !rom !!H! ‘ !!!!H!

[Avail] = [Avail] + [Alloc,s]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.30

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

remove HO!@ !rom !!H! ‘ !!!!H!

[Avail] = [Avail] + [Alloc,,]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.31

Deadlock Detection Algorithm

Example

[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocg, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3}
do {

done = true

Foreach node in UNFINISHED {

if ([Request.,] <= [Avail]) {

done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.32

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {
if ([Request;,] <= [Avail]) {
remove node from UNFINSHED

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.33

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {
if ([Request;,] <= [Avail]) {
remove node from UNFINSHED

‘Aviil| = ‘Aviil‘ + ‘Alliiii G

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.34

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {
if ([Request;,] <= [Avail]) {
remove node from UNFINSHED
[Avail] = [Avail] + [Allocq,] 0

done = false

}

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.35

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {
done = true

1! !‘!eques!mme| <= ‘!val‘ ! !

remove node from UNFINSHED
[Avail] = [Avail] + [Alloc, 4] 0

done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.36

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {

remove HO!@ !rom !!H! ‘ !!!!H!

[Avail] = [Avail] + [Alloc,]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.37

Deadlock Detection Algorithm

Example

[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1]
UNFINISHED = {T3}
do {

done = true

Foreach node in UNFINISHED {

if ([Request.,] <= [Avail]) {
done = false

}

}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.38

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,2]

UNFINISHED = {T3}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,,] <= [Avail]) {
remove node from UNFINSHED

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.39

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,2]

UNFINISHED = {T3}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,,] <= [Avail]) {
remove node from UNFINSHED

‘Aviil| = ‘Aviil‘ + ‘Alliiil G

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.40

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,2]

UNFINISHED = {T3}

do {

done = true
Foreach node in UNFINISHED {

remove HO!@ !rom !”!! ‘ !!!!H!

[Avail] = [Avail] + [Alloc,s]
done = false

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.41

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy; = [1,0] Q
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,2]
UNFINISHED = {}
do {
done = true
Foreach node in UNFINISHED {
1f ([Request.,.,] <= [Avail]) {
[orore moc® Trom omEIIERED] (1,
done = false

}

}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.42

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail]l = [2,2]

UNFINISHED = {}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,;] <= [Avail]) {
remove node from UNFINSHED

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.43

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocs, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail]l = [2,2]

UNFINISHED = {}

do {

done = true
Foreach node in UNFINISHED {
1f ([Request,;] <= [Avail]) {
remove node from UNFINSHED

‘Aviil| = ‘Aviil‘ + ‘Allii"

}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.44

Deadlock Detection Algorithm

Example
[Request,;] = [1,0]; Allocy; = [0,1]
[Request,] [0,0]; Allocg, = [1,0]
[Request.;] = [0,1]; Allocqy; = [1,0]
[Request,,] = [0,0]; Allocy, = [0,1]
[.

UNFINISHED = {}
® &
done = true

1! !‘!eques!m <= ‘!val |! !

remove node from UNFINSHED
[Avail] = [Avail] + [Alloc,s]
done = false

}
}

} until (done)

DONE!

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.45

Techniques for Preventing Deadlock

* |Infinite resources

— Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)

— Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

- No Sharing of resources (totally independent threads)
— Not very realistic

- Don’t allow waiting

— How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal

— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.46

Techniques for Preventing Deadlock (con’t)

- Make all threads request everything they’ll need at the
beginning

— Problem: Predicting future is hard, tend to over-estimate
resources

— Example:

» Don’t leave home until we know no one is using any intersection
between here and where you want to go!

« Force all threads to request resources in a particular order
preventing any cyclic use of resources

— Thus, preventing deadlock
— Example (x.P, y.P, z.P,...)
» Make tasks request disk, then memory, then...

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.47

Train Example (Wormhole-Routed Network)
» Circular dependency (Deadlock!)
— Each train wants to turn right
— Cannot turn on a track segment if occupied by another train
— Similar problem to multiprocessor networks

 Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)

» Protocol: Always go east-west (horizontally) first, then north-
south (vertically)

9/19/12 lon Sjoica CS162 ©UCHFall 2012 Lec 7.48

Banker’s Algorithm for Preventing

Deadlock
» Toward right idea:

— State maximum resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

- Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T,,
T,, ... T} with T, requesting all remaining resources, finishing, then
T, requesting all remaining resources, etc..
— Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.49

Banker’s Algorithm

- Technique: pretend each request is granted, then run
deadlock detection algorithm, substitute
([Requestqe] < [Avail]) > ([MaX,oqe]-[AlloC o4] < [Avail])

[FreeResources] : Current free resources each type
[Allocy]: Current resources held by thread X
[Max,] : Max resources requested by thread X
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true

Foreach node in UNFINISHED {

1f ([Max, g.] - [Alloc, 4.1<= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc
done = false

node:|
}
}

} until (done)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.50

Banker’s Algorithm Example

- Banker’s algorithm with dining philosophers

— “Sﬁfe” (won’t cause deadlock) if when try to grab chopstick
either:

» Not last chopstick

» |s last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don't allow if:
» |t’s the last one, no one would have k
» It’s 2" to last, and no one would have k-1
» |t’s 3 to last, and no one would have k-2

919112 > - lon Stoica CS162 ©UCB Fall 2012 Lec 7.51

Summary: Deadlock

- Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

- Four conditions for deadlocks
— Mutual exclusion
» Only one thread at a time can use a resource
— Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption
» Resources are released only voluntarily by the threads
— Circular wait
» 3set{T,, ..., T} of threads with a cyclic waiting pattern
- Deadlock preemption

- Deadlock prevention (Banker’s algorithm)

9/19/12 lon Stoica CS162 ©UCB Fall 2012 Lec 7.52

