CS162
Operating Systems and
Systems Programming

Lecture 9

Address Translation

September 26, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Virtualizing Resources

+ Physical Reality: Processes/Threads share the same hardware
— Need to multiplex CPU (CPU Scheduling)
— Need to multiplex use of Memory (Today)

+ Why worry about memory multiplexing?
— The complete working state of a process and/or kernel is defined
by its data in memory (and registers)
— Consequently, cannot just let different processes use the same
memory
— Probably don’t want different processes to even have access to
each other’'s memory (protection)

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.3

Page 1

Goals for Today

+ Address Translation Schemes
— Segmentation
— Paging
— Multi-level translation
— Paged page tables
— Inverted page tables

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz.

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.2

Important Aspects of Memory Multiplexing

+ Controlled overlap:
— Processes should not collide in physical memory

— Conversely, would like the ability to share memory when desired
(for communication)

* Protection:
— Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc)
» Kernel data protected from User programs

+ Translation:
— Ability to translate accesses from one address space (virtual) to
a different one (physical)
— When translation exists, process uses virtual addresses,
physical memory uses physical addresses

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.4

Process view of memory

Binding of Instructions and Data to
Memory

Assume 4byte words
0x300 = 4 * 0x0CO
Physi] 0x0c0 0000 1100 0000

0x300 = 0011 0000 0000

datal: dw 32 0x03 (0]
start: lw rl,0(datal) 0%0900 8C2000C0
jal checkit 0x0904 0C00
loop: addi rl, rl, -1 0x0908 2021FFFF
bnz rl, loop 0x090C 14200242
checkit: .. 0;
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.5

Binding of Instructions and Data to

Physical
Memory Memory
0x0000
0x0300
Process view of memory Physical addresses
App X
datal: dw 32 0x300 00000020 oge)oo PP
start: 1lw rl,0(datal) 0x900 8C2000C0 "
e AR 0x904 0C000280
loop: addi r1, r1, -1 0x908 2021FFFF
bnz rl, r0, loop 0x90C 14200242
checkit: .. 0x0A00
OXFFFF
Need address translation!
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.7

Page 2

Binding of Instructions and Data ;9
Y

sical
Memory Memory
0x0000
0x0300{ 00000020
Process view of memory Physical addresses
datal: dw 32 0x0300 00000020 | 9X0900] 8C2000C0
0C000340
start: 1w rl,0(datal) 0x0900 8C2000C0 2021FFFF
jal checkit 0%x0904 0C00 14200242
loop: addi r1, rl, -1 0x0908 2021FFFF
bnz rl, loop 0x090C 14200242
checkit: .. 0;
OxXFFFF
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.6

Binding of Instructions and Data to

Memory Memory
0x0000
0x0300
Process view of memory Processor view of memory
datal: dw 32 oxos00| AppP X

0x1300 00000020

start: 1w rl,0(datal)

0x1900 8C2004CO

jal checkit 0x1904 0C00 0x1300[00000020

loop: addi rl, rl, -1 0x1908 2021FFFF
bnz rl, r0, loop 0x190C 14200642
ox{900| 8C2004c0
checkit: .. 0x 0Cc000680
2021FFFF
+ One of many possible translations! 14200642
* Where does translation take place? oxFFFr
Compile time, Load time, or Execution time?
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.8

Multi-step Processing of a Program for Execution Example of General Address Translation
+ Preparation of a program for execution -
involves components at: program Code i Code
— Compile time (i.e., “gcc”) _ Data \ : Stack 1 /
— Link/Load time (unix “Id” does link) } compie i Hean 1 Data
— Execution time (e.g. dynamic libs) assembler e Heap . i Heap
Stack 71 (i | Go%! Stack
+ Addresses can be bound to final ER
values anywhere in this path Prog 1 R o Prog 2
— Depends on hardware support T Virtual E Virtual
— Also depends on operating system Address kY Address
Space 1 N Space 2
- Dynamic Libraries e [0S code \
— Linking postponed until execution
— Small piece of code, stub, used to Translation Map 1 0S data Translation Map 2
locate appropriate memory-resident fynamican 0S heap &
library routine o s:ack'i
— Stub replaces itself with the address of 207 [immemon | | o
the routine, and executes routine linking | memory e tren Ph)ésical Address Space
9/26/2012 lon Stoica CS162 ©UCB Fall 201 {mage 9/26/2012 lon"Stoica CS162 ©UCB Fall 201 9.10
Two Views of Memory Uniprogramming (MS-DOS) Starting M5 D0S. .

Virtual Physical
Addresses Addresses

- Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory
since only one application at a time

— Application can access any physical address

Untranslated read or write

+ Address Space:
— All the addresses and state a process can touch Operating OxFFFFFFFF
— Each process and kernel has different address space System
« Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)
— Translation box (MMU) converts between the two views

Valid 32-bit
Addresses

+ Translation helps to implement protection Application
; , 0x00000000
— If task A cannot even gain access to task B’s data, no way for A T)) L
to adversely affect B — Application given illusion of dedicated machine by giving it
« With translation, every program can be linked/loaded into reality of a dedicated machine
same region of user address space
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.1 9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.12

Page 3

Multiprogramming (First Version)
+ Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application1
0x00000000

— Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days
» With this solution, no protection: bugs in any program can

cause other programs to crash or even the OS
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.13

Simple Base and Bounds (CRAY-1)

Base
Virtual
- Address f_l_k
PU > $| DRAM
= Physical
Limit Address
No: Error!

» Could use base/limit for dynamic address translation (often
called “segmentation”) — translation happens at execution:

— Alter address of every load/store by adding “base”
— Generate error if address bigger than limit
+ This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0
— Program gets continuous region of memory

— Addresses within program do not have to be relocated when
program placed in different region of DRAM

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.15

Page 4

Multiprogramming (Version with Protection)

» Can we protect programs from each other without
translation?

OxFFFFFFFF
Operating
System
«——{ LimitAddr=0x10000 |
Application2 | 0x00020000 «—{BaseAddr=0x20000 |
Application1
0x00000000

— Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area
» If user tries to access an illegal address, cause an error

— During switch, kernel loads new base/limit from TCB (Thread
Control Block)
» User not allowed to change base/limit registers

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.14

More Flexible Segmentation

stack

symbol
table

sqrt
main
program

logical address

subroutine

user view of

physical

+ Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc

« Each segment is given region of contiguous memory
—Has a base and limit

anerir 08N reside anywhere inplysigal mgmory o.16

Implementation of Multi-Segment Model

Virtual Offset |} offset Error

Address Base0| Limit0 | V
Vv

hysical

Vv Address
| N
| N
Base7| Limit7 | V

+ Segment map resides in processor
— Segment number mapped into base/limit pair
— Base added to offset to generate physical address
— Error check catches offset out of range

+ As many chunks of physical memory as entries
— Segment addressed by portion of virtual address
— However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
+ What is “V/N” (valid / not valid)?

— Can mark segments as invalid; requires check as well
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.17

Issues with simple segmentation method

process 6 process 6 process 6 process 6
process 5 process 5 process 5 process 5

process 9 process 9
process2 | T = = process 10
0os oS 0s 0os

* Fragmentation problem
— Not every process is the same size
— Over time, memory space becomes fragmented
» Hard to do inter-process sharing
— Want to share code segments when possible
— Want to share memory between processes
— Helped by providing multiple segments per process

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.19

Page 5

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit
- Offset] 0(code) |0x4000 |0x0800
15 1413 0 1 (data) 0x4800 | 0x1400

Virtual Address Format 2 (shared) |0xF000 |0x1000
3 (stack) |0x0000 |0x3000

SegID =0

0x0000 0x0000
= 0x4000 i
0x4000 SegD=1l 5 e o0 —— Might
be shared
> 0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
X - Other Apps
Virtual Physical
Address Space Address Space
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.18

Schematic View of Swapping
+ Q: What if not all processes fit in memory?

+ A: Swapping: Extreme form of Context Switch
— In order to make room for next process, some or all of the
previous process is moved to disk
— This greatly increases the cost of context-switching

G
operating [—

system

D swapour | [P

process P,
@ swapin

user =

g backing store

main memory

» Desirable alternative?

— Some way to keep only active portions of a process in
memory at any one time

— Need finer granularity control over physical memory
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.20

Problems with Segmentation

+ Must fit variable-sized chunks into physical memory
+ May move processes multiple times to fit everything
+ Limited options for swapping to disk

+ Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.21

Paging: Physical Memory in Fixed Size Chunks

+ Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents page of physical memory
1=allocated, O=free

+ Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.23

Page 6

5min Break

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.22

How to Implement Paging?
Virtual Address:

PageTablePtr

Physical Address
Check Perm

PageTableSize

page #3 | V.RW
i age #4_| N
pecess oot i
+ Page Table (One per process) Error
— Resides in physical memory
— Contains physical page and permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
+ Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds andé)ermissions
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.24

Access

What about Sharing?

Virtual Address
(Process A):

age #0 | V.R
age #1 | V.R
| page #2 " V.RW|
#3 | V,RW
ﬁ: # [N Shared
[page #5 | V.R.W Page
PageTablePtrB page #0 | VR
 page #1 [N . .
[page #2 | yRW This physical page
[page #3 N appears in address
[page #4 “[V.R space of both processes
| page #5 | V.R,W|

(Process B):

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.25

Page Table Discussion

+ What needs to be switched on a context switch?
— Page table pointer and limit

+ Analysis

— Pros
» Simple memory allocation
» Easy to Share

— Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (23'-1).
» With 1K pages, need 4 million page table entries!

— Con: What if table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

+ How about combining paging and segmentation?

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.27

Page 7

Simple Page Table Example

Example (4 byte pages)

— 0000 0000

0 0001 00003 gx04
0000 1100

i oxos F4—] o0ooo o100 > 1

1

i
P !
‘ 2[7 | —2000010d oxo8 H—
: oxos 1 0000 1_|0°0 Page —> ox0C [
: i
i k

e
Table f
9
. L —> 0x10 Jg_
Virtual b
Memory c
Physical
H Memory H
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.26

Multi-level Translation
+ What about a tree of tables?
— Lowest level page table==memory still allocated with bitmap
— Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual

Offset
Address:

age #0 [V,R
Base0| Limi age #1 | V,R Offset
Base1l| léthit1 | V. page #2 R, "
Base?| Limi page #3 | VAW Physical Address
gasei ::'"'":4 N page #4 [N

ased4| Limi
V,R,W|

Bases| Limits page #5 Check Perm
Base6| Limit6 | N
Base7| Limit7 | V' ccess Access

Error Error

+ What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.28

What about Sharing (Complete Segment)?

Process A [offset |
P o
| page #1
age #2
B once 5
BaseZ| Limit2 |V | page #4 |
Base3| Limit3 | N page #5
Based Limitd| ¥ Shared Segment
Base5| Limit5 | N Basel Limi
Base6| Limit6 | N Bas L!m!tg
Base7| Limit7 [V asel Limit

Base3| Limit3
Based4| Limit4
Baseb5| Limit5
Base6)| Limit6
Base7| Limit7

<|zlz|<|z]<|<|<

Process B

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.29

Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need
for application

» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous

» However, previous example keeps tables to exactly one page in
size

— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.31

Page 8

Another common example: two-level page table

Physical
10bits_10bits _12bits __ piveio Offsey

Virtual

Address:

4KB

PageTablePtr

—> 4 bytes +—

+ Tree of Page Tables
+ Tables fixed size (1024 entries)
— On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
— Don’t need every 2"d-level table
— Even when exist, 2"-level tables can_, 4 bytes +—
reside on disk if not in use
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.30

Inverted Page Table
+ With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual
memory allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash M

Table

» Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

— Often in hardware!
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.32

Summary: Address Segmentation
Virtual memory view 1011 0000 + | Physical memory view
1111 1111 11 0000
11110000 | Stack 1 7
(0xF0) 1110 0000 1110 0000
(0xE0)
1100 0000 Seg # | base limit
(0xC0) 1 1011 0000 1 0000
I 10 0111 0000 11000
/ 01 0101 0000 | 10 0000
heap 1
1000 0000 00 0001 0000 | 10 0000
(0x80) 0111 0000
(0x70)
0101 0000
0100 0000 (0x50)
(0x40)
code 0001 0000
code
0900 0000, 0086668
lseg # offset
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.33

Recap: Address Segmentation

Virtual memory view

Physical memory view

1111 1111
stack
11100000 | | 1110 0000
1100 0000 Seg # | base limit
11 1011 0000 10000
1 10 0111 0000 11
o / 01 01010000 | 10d No room to grow!

1000 0000 P 00 00010000 | 10d Buf_fer overflow error or
resize segment and 00
move segments around
to make room boo

0100 0000

code 0001 0000

0000 0000 0000 0000

lseg # offset

9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.35

Page 9

Virtual memory view

Summary: Address Segmentation

Physical memory view

1111 1111
stack
1110 0000 1110 0000
1
. Seg # | base limit
V\tlhal: happer:s if 1 10110000 | 10000 -
stack grows to
10 0111 0000 11000
1110 00007
01 0101 0000 | 10 0000
eap 1
1000 0000 00 00010000 | 10 0000 hea
P | o111 0000
0101 0000
0100 0000
code
code 0001 0000
0000 0000 0000 0000
lseg # offset
9/26/2012 lon Stoica CS162 ©UCB Fall 2012 9.34

Summary: Paging

page # offset

i i Page Table
11 1}/1|:tual memory view 11111 [11101 7,,0 ,Physn:al memory view
PR 11110/ 11100 117
1111 0000 °‘:“"‘ 11101| null
11100| null
* ot | nul 110 0000
11010 null
11001(null
1100 0000 11000[null
10111] null
10110 null
T 10101| null
| | 10100 null
10011 null
heap %10010 10000
1000 0000 \10001 o111
10000[01110 0111 000
01111| nun
null
null 0101 000
null
0100 0000 ool
01100
01011
01010 o o
null g coue
null 0001 0000
I
0000 0000 il 2 0000 0000
i \ 00101
00010)

9/26/2012

00100
00011
00010

9.36

Summary: Paging

Page Table

Virtual memory view

1111 11

1110 0000 i

/

What happens if
stack grows to
1110 00007

1000 0000

0100 0000

o

i
COG¢C

0000

-
page # offset

9/26/2012

A

St
p—

11101
11100
11011
11010|
11001
11000
10111
10110|
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000}
00111
00110
00101
00100}
00011
00010}
00001

00000

1101

11100
null
null
null
null
null
null
null
null
null
null
null

10000

o111
01110
null
null
null
null
01101

01100

01011

01010

null
null
null
null
00101

00100

00011

00010

Physical memory view

110 0000

0111 000

0101 000

Pl

g P
o code

0001 0000

E 2 0000 0000

9.37

Summary: Two-Level Paging

Virtual memory view

1111 111
—stack—
1110 0000 I
¥
1100 0000
T
(|
—heap |
1000 0000
0100 0000 -
page?2 # -
LuUUcCc
0005‘6000

pagel # offset
9/26/2012

101
]._.wo
o011

Page Tablg
(level 1)

111
110

010
001
000

Page Tables

(level 2)

Physical memory view

"
10
01
00

11101
11100
10111
10110

1110 0000

"
10
01
00

null
10000
o111
01110

)

0111 000

"
10
01
00

01101
01100
o101
01010

0101 000

"
10

00

00101
00100
00011
00010

pry
LuUuc

0001 0000

—
E 0000 0000

lon Stoica CS162 ©UCB Fall 2012

9.39

Page 10

Summary: Paging

Virtual memory view

Page Table
11101

1111 111

S
—]

11100

[—stack————— 11101

10111

—11100

1110 0000

10110

11011} null

|
E 3

11010 null

11001 null

1100 0000

11000{ null

10111 null

10110[null

10101| null

-

10100 null

10011| null

1000 0000

10010/ 10000

Physical memory view

Allocate new

10001| 01111

pages where

F
|

10000[01110

room!

01111| null

0100 0000

01110
01101
01100|
01011
01010]

null

null

null
01101
01100

01001| 01011

01000| 01010

00111 null

00110| null

o
COUT 00101 null
0000 9900 \umoo null
00011) 00101
page # offset 00010| 00100
00001 00011
9/26/2012 00000| 00010

bUdU
0001 0000
EE 0000 0000
9.38

1001 0000

Summary: Two-Level Paging

Virtual memory view

—stack—|

1
E

(0x90)

hber
.

pry
\Rmvivid

9/26/2012

Page Tables
(level 2)

11| 11101
10[11100
01 10111
00{ 10110

Page Table
(level 1)

11| 00101
10| 00100
01/ 00011
00] 00010

lon Stoica CS162 ©UCB Fall 2012

Physical memory view

1110 0000

1000 0000

(0x80)
budc
0001 0000
E 0000 0000
9.40

9/26/2012

Summary: Inverted Table

Virtual memory view

Physical memory view
1111 1111

—stack—]

1110 0000 1110 0000

Inverted Table
hash(virt. page #) =
phys. page #

|
R 3

1100 0000

1011 0000

h(11111) = 1110[11101
h(11110) = 1101[11100
h(11101) = 1100/10111
h(11100) = 1011[10110]
h(10010)= 1010|1000t
h(10001)= 1001 (01111
h(10000)= 1000[01110
h(01011)= 0111 01101
h(01010)= 0110{01100)
h(01001)= 0101 (01011

hean
p

1000 0000

hean
18

Il

0111 000

0101 000

I()=01 01
0100 0000 h(00011)= 0011 [00101
h(00010)= 00100010
h(00001)= 0001{00011

o

7 W

0001 0000
0000 0000

]
COG¢C

0000 9?_0;]
page # offset

lon Stoica CS162 ©UCB Fall 2012 9.41

9/26/2012

Summary

Memory is a resource that must be multiplexed
— Controlled Overlap: only shared when appropriate
— Translation: Change virtual addresses into physical addresses
— Protection: Prevent unauthorized sharing of resources

Simple Protection through segmentation
— Base+limit registers restrict memory accessible to user
— Can be used to translate as well

Page Tables
— Memory divided into fixed-sized chunks of memory
— Offset of virtual address same as physical address
Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

Inverted page table: size of page table related to physical mem. size

lon Stoica CS162 ©UCB Fall 2012 9.43

Page 11

Address Translation Comparison

Advantages

Disadvantages

Segmentation | Fast context External fragmentation
switching: Segment
mapping
maintained by CPU
Paging No external Large table size ~ virtual
(single-level | fragmentation memory
page)
Paged Table size ~ # of Multiple memory
segmentation | pages in virtual references per page
Two-level memory access
pages

Inverted Table

Table size ~ # of
pages in physical
memory

Hash function more
complex

