CS162
Operating Systems and
Systems Programming

Lecture 12

Kernel/User, I/0

October 8, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Thrashing

thrashing

CPU utilization

degree of multiprogramming
+ If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

— low CPU utilization

— operating system spends most of its time swapping to disk
+ Thrashing = a process is busy swapping pages in and out
+ Questions:

— How do we detect Thrashing?

— What is best response to Thrashing?
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.3

Page 1

Goals for Today

+ Finish Demand Paging: Trashing and Working Sets
» Dual Mode Operation: Kernel versus User Mode
+ 1/O Systems
— Hardware Access
— Device Drivers
+ Disk Performance
— Hardware performance parameters

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.2

Locality In A Memory-Reference Pattern

e —— ———————————

* Program Memory Access N e

Patterns have temporal and o
spatial locality L | 114 21 YO .

— Group of Pages accessed

along a given time slice
called the “Working Set” e —

— Working Set defines =
minimum number of pages B
needed for process to
behave well

* Not enough memory for 2f ‘. ‘ 4/
Working Set=Thrashing — 1 ‘
— Better to swap out process? =

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.4

10/8/2012

Working-Set Model

page reference table

...2615777751623412344434344413234443444...
A | A |

t, t

WS(t,) = {1,2,5.6,7} WS(t,) = {3,4}

A = working-set window = fixed number of page references
— Example: 10,000 instructions
WS, (working set of Process P) = total set of pages
referenced in the most recent A (varies in time)
—if A too small will not encompass entire locality
—if A too large will encompass several localities
—if A = o = will encompass entire program
D = ZIWS] = total demand frames
if D> memory = Thrashing
— Policy: if D> memory, then suspend/swap out processes
— This can improve overall system behavior by a lot!

lon Stoica CS162 ©UCB Fall 2012 125

10/8/2012

Quiz 12.1: Demand Paging

Q1: True _ False _ Demand paging incurs conflict misses
Q2: True _ False _ LRU can never achieve higher hit rate
than MIN

Q83: True _ False _ The LRU miss rate may increase as the
cache size increases

Q4: True _ False _ The Clock algorithm is a simpler
implementation of the Second Chance algorithm

Q5: Assume a cache with 100 pages. The number of pages
that the Second Chance algorithm may need to check
before finding a page to evict is at most ___

lon Stoica CS162 ©UCB Fall 2012 12.7

Page 2

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur the
first time that a page is seen

— Pages that are touched for the first time

— Pages that are touched after process is swapped out/swapped
back in

+ Clustering:

— On a page-fault, bring in multiple pages “around” the faulting
page

— Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages

+ Working Set Tracking:
— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.6

Quiz 12.1: Demand Paging

+ Q1:True _ False X Demand paging incurs conflict misses

+ Q2: True X False _ LRU can never achieve higher hit rate
than MIN

+ Q3: True _ False X The LRU miss rate may increase as the
cache size increases

+ Q4: True X False _ The Clock algorithm is a simpler
implementation of the Second Chance algorithm

+ Q5: Assume a cache with 100 pages. The number of pages
that the Second Chance algorithm may need to check
before finding a page to evict is at most 101

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 128

Review: Example of General Address Translation

Code \:: k Code
Data ¥ i Stacki Data
Heap > ¥ = Heap
Stack E E Code 1 Stack
Prog 1 -: : Prog 2
Virtual] el Virtual
Address s Address
Space 1 . Space 2
l OS code
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks
Physical Address Space
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.9

Dual-Mode Operation

. Can'?an application modify its own translation maps or PTE
bits?
— If it could, could get access to all of physical memory
— Has to be restricted somehow

» To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):
— “Kernel” mode (or “supervisor” or “protected”)
—“User” mode (Normal program mode)

— Mode set with bits in special control register only accessible in
kernel-mode

* Intel processors actually have four “rings” of protection:
— PL (Privilege Level) from 0 -3
» PLO has full access, PL3 has least
— Typical OS kernels on Intel processors only use PLO (“kernel”)
and PL3 (“user”)

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 1241

Page 3

Review: Demand Paging Mechanisms

* Leverage PTE bits
—“V”: Valid / Not Valid
» “V =1”: Valid = Page in memory, PTE points at physical page
» “V = 0”: Not Valid = Page not in memory; use info in PTE to find
page on disk if necessary
—“D =1": Page modified = Need to write it back to disk before
replacing it
—*U =1": Page modified = Give page a second chance before
being replaced when using Second Chance algorithm

+ Others:
- “R{W”: specifies whether the page can be modified or is read
only
— Page Access Count: implement a more accurate LRU
algorithms
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.10

For Protection, Lock User-Programs in Asylum

+ Idea: Lock user programs in padded cell
with no exit or sharp objects
— Cannot change mode to kernel mode
— Cannot modify translation maps

— Limited access to memory: cannot
adversely effect other processes

— What else needs to be protected?

+ A couple of issues
— How to share CPU between kernel and user programs?
— How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell
» User— OS (user — kernel mode): getting out of cell

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.12

How to get from Kernel—User
+ What does the kernel do to create a new user process?
— Allocate and initialize process control block
— Read program off disk and store in memory
— Allocate and initialize translation map
» Point at code in memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes (we learned about
this!) ?
— Same saving/restoring of registers as before

— Save/restore hardware pointer to translation map
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.13

System Call (cont’d)

+ Are system calls the same across operating systems?
— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)

+ What happens at beginning of system call?
— On entry to kernel, sets system to kernel mode
— Handler address fetched from table, and Handler started

+ System Call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel memory
— Every argument must be explicitly checked!

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 1215

Page 4

User—Kernel (System Call)

+ Can't let inmate (user) get out of padded cell on own
— Would defeat purpose of protection!
— So, how does the user program get back into kernel?

user process

(:

I/0: open, close, read, write, Iseek
| ser process executing |—i °a”“y$\‘9 Files: delete, mkdir, rmdir, chown
= Process: fork, exit, join

rey
kone! mode | Network: socket create, select

Il into kernel

» No! Only specific ones
— System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.14

User—Kernel (Exceptions: Traps and Interrupts)

+ System call instr. causes a synchronous exception (or “trap”)
— In fact, often called a software “trap” instruction

+ Other sources of Synchronous Exceptions:

— Divide by zero, lllegal instruction, Bus error (bad address, e.g.
unaligned access)

— Segmentation Fault (address out of range)
— Page Fault

+ Interrupts are Asynchronous Exceptions
— Examples: timer, disk ready, network, etc....
— Interrupts can be disabled, traps cannot!

+ SUMMARY — On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— For some processors (x86), processor also saves registers,
1osrzo16hanges stack, etCion stoica cs162 ©UCB Fall 2012 1216

Administrivia

+ Please fill the anonymous course survey at
https://www.surveymonkey.com/s/69DZCJS

» We’ll make changes based on your feedback

+ Project 2 Design Doc due Thursday 10/11 at 11:59PM

+ Midterm next Monday 10/15 during lecture at 4-5:30PM
+ Closed-book, 1 double-sided page of handwritten notes

» Covers lectures/readings #1-12 (Today 10/8) and project one S5min Break
» Midterm review session: Friday 10/12 7-9PM in 306 Soda
Hall
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.17 10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.18

The Requirements of /0

|

a

&/ \&/

+ What is the role of 1/0?
— Without I/0, computers are useless (disembodied brains?)
— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
— Devices unreliable: media failures and transmission errors
» How can we make them reliable???
— Devices unpredictable and/or slow
» How can we manage them if we don’t know what they will do or
how they will perform?

SCSl bus
D (B () (¢
2

) {
&/

p

graphics bridge/memory | | SCS| controller
controller controller 4 %

L T L—PCl bus T

IDE disk controller expansion bus
interface

keyboard

) -expansionbus——)

g Hz)
\&/\&/

parallel serial

(g Hg
=/ \&/
78\ /B

@ @

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 ¥ 12.19 10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.20

Page 5

The Requirements of I/0

+ Some operational parameters:

— Data granularity: Byte vs. Block
» Some devices provide single byte at a time (e.g., keyboard)
» Others provide whole blocks (e.g., disks, networks, etc.)

— Access pattern: Sequential vs. Random
» Some devices must be accessed sequentially (e.g., tape)
» Others can be accessed randomly (e.g., disk, cd, etc.)

— Transfer mechanism: Polling vs. Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.21

The Goal of the I/0 Subsystem

+ Provide uniform interfaces, despite wide range of different
devices

— This code works on many different devices:
FILE fd = fopen (“/dev/something”, “rw”) ;

for (int i = 0; 1 < 10; i++) {
fprintf (fd, “Count %d\n”,1i);

}

close (fd);

—Why? Because code that controls devices (“device driver”)
implements standard interface.

+ We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

— Can only scratch surface!

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 1203

Page 6

Example Device-Transfer Rates (Sun
Enterprise 6000)

gigaplane
bus

SBUS

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

modem
mouse

keyboard

| | | |
0 0.01 0.1 1 10 100

"00p |-

s}
S
LA

%

+ Device Rates vary over many orders of magnitude
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!

— Better not waste time waiting for slow devices
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.22

Want Standard Interfaces to Devices

- Block Devices: e.g., disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open (), read(), write (), seek()
— Raw /O or file-system access
— Memory-mapped file access possible
- Character/Byte Devices: e.g., keyboards, mice, serial ports,
some USB devices
— Single characters at a time
— Commands include get (), put ()
— Libraries layered on top allow line editing
+ Network Devices: e.g., Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation

» Includes select () functionality
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.24

How Does User Deal with Timing?

+ Blocking Interface: “Wait”

— When request data (e.g., read () system call), put process to
sleep until data is ready

— When write data (e.g., write () system call), put process to
sleep until device is ready for data

+ Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred to kernel

— Read may return nothing, write may write nothing
+ Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.05

Example: Memory-Mapped Display
Controller
* Memory-Mapped:

— Hardware maps control registers and dis

Play o,80020000

memory into physical address space Graphics
» Addresses set by hardware jumpers or Command
programming at boot time Queue
— Simply writing to display memory (also called 0x80010000 Display
the “frame buffer”) changes image on screen Memory
» Addr: 0x8000F000—0x8000FFFF
— Writing graphics description to command- ~ 0x8000F000
queue area
» Say enter a set of triangles that describe
some scene 0x0007F004 [Command

» Addr: 0x80010000—0x8001FFFF
— Writing to the command register may cause
on-board graphics hardware to do something
» Say render the above scene — T
» Addr: 0x0007F004

0x0007F000 Status

+ Can protect with address translation
~ L Space
)]

__—
5.\—.7
10/8/2012 lon Stoica CS162 ©UCB Fall 201 12.27

Physical Address

Page 7

How does the processor actually talk to
the device?

_—
Processor Memory Bus Regular
Memory \
L
S——

Bus =
Adaptol cDetchT
Other Devices Addr(:ss+ e
Interrupt or Buses «—— a2 : tB:s Hardware
nteriace
Controller Interrupt Request Controller
faac) Addressable
+ CPU interacts with a Controller [Control| Merg/ow
— Contains a set of registers that Rmegisters s
can be read and written (port 0x20)
— i Memory Mapped
May contain memory for request RoGIo xaft?&ozo

queues or bit-mapped images
+ Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
— 1/0 instructions: infout instructions (e.g., Intel’s 0x21,AL)
— Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/0 accomplished with load and store instructions
10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.26

Transferring Data To/From Controller

+ Programmed 1/O:

— Each byte transferred via processor in/out or load/store

— Pro: Simple hardware, easy to program

— Con: Consumes processor cycles proportional to data size
+ Direct Memory Access:

— Give controller access to memory bus

— Ask it to transfer data to/from memory directly
+ Sample interaction with DMA controller (from book):

1. device driver is told

to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer -
and decreasing C at address X
untiC =0 ST
us/
6. when C = 0, DMA ; = = »
interrupts CPU to signal | Interfupt CRUmeimorybus.<) memory
transfer i controller

i : - PCI bu)

‘ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
\ each byte to DMA
‘e > disp controller

disk]
10/8/2012 12.28
E\:\w (@isK

I/0 Device Notifying the OS

+ The OS needs to know when:
—The 1/O device has completed an operation
—The I/O operation has encountered an error
« I/O Interrupt:
—Device generates an interrupt whenever it needs service
—Pro: handles unpredictable events well
—Con: interrupts relatively high overhead
* Polling:
—OS periodically checks a device-specific status register
» /O device puts completion information in status register
—Pro: low overhead
—Con: may waste many cycles on polling if infrequent or
unpredictable 1/0 operations
+ Actual devices combine both polling and interrupts
—For instance — High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.29

Quiz 12.2: 1/0

« Q1: True _ False _ With an asynchronous interface, the
writer may need to block until the data is written

+ Q2: True _ False _ Polling is more efficient that interrupts
for handling very frequent requests

« Q3: True _ False _ Segmentation fault is an example of
synchronous exception (trap)

+ Q4: True _ False _ DMA is more efficient than
programmed 1/O for transferring large volumes of data

+ Q5: In a I/0 subsystem the queueing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the requestis ___ms

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.31

Page 8

I/0 Performance

300 | Response

Q Time (ms)
User = /o 200
Thread _’D]]_’ o
Queue)
[OS Paths] 100
Response Time = Queue + I/O device service time

0 0o 100%
Throughput (Utilization)

» Performance of I/0O subsystem (% total BW)

— Metrics: Response Time, Throughput
— Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» |/O device service time
» Queuing behavior:
— Can lead to big increases of latency as utilization approaches

100%

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.30

Quiz 12.2: 1/0

+ Q1: True _ False X With an asynchronous interface, the
writer may need to block until the data is written

+ Q2: True _ False X Interrupts are more efficient that
polling for handling very frequent requests

+ Q3: True X False _ Segmentation fault is an example of
synchronous exception (trap)

+ Q4: True X False _ DMA is more efficient than
programmed 1/O for transferring large volumes of data

+ Q5: In a I/O subsystem the queueing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the requestis 50 ms

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 1032

Summary

+ Dual-Mode
— Kernel/User distinction: User restricted
— User—Kernel: System calls, Traps, or Interrupts

+ 1/O Devices Types:
— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns: block, char, net devices
— Different Access Timing: Non-/Blocking, Asynchronous

+ 1/O Controllers: Hardware that controls actual device
— CPU accesses thru 1/O insts, Id/st to special phy memory
— Report results thru interrupts or a status register polling

+ Device Driver: Device-specific code in kernel

10/8/2012 lon Stoica CS162 ©UCB Fall 2012 12.33

Page 9

