
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 12  
 

Kernel/User, I/O"

October 8, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

12.2!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Finish Demand Paging: Trashing and Working Sets!
•  Dual Mode Operation: Kernel versus User Mode!
•  I/O Systems!

– Hardware Access!
– Device Drivers!

•  Disk Performance!
– Hardware performance parameters!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

Goals for Today"

12.3!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Thrashing"

•  If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:!

–  low CPU utilization!
– operating system spends most of its time swapping to disk!

•  Thrashing ≡ a process is busy swapping pages in and out!
•  Questions:!

– How do we detect Thrashing?!
– What is best response to Thrashing?!

12.4!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Program Memory Access
Patterns have temporal and
spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

•  Not enough memory for
Working Set⇒Thrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

Page 2

12.5!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Working-Set Model"

•  Δ ≡ working-set window ≡ fixed number of page references !
– Example: 10,000 instructions!

•  WSi (working set of Process Pi) = total set of pages
referenced in the most recent Δ (varies in time)!

–  if Δ too small will not encompass entire locality!
–  if Δ too large will encompass several localities!
–  if Δ = ∞ ⇒ will encompass entire program!

•  D = Σ|WSi| ≡ total demand frames !
•  if D > memory ⇒ Thrashing!

– Policy: if D > memory, then suspend/swap out processes!
– This can improve overall system behavior by a lot!!

12.6!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

What about Compulsory Misses?"
•  Recall that compulsory misses are misses that occur the

first time that a page is seen !!
– Pages that are touched for the first time!
– Pages that are touched after process is swapped out/swapped

back in!
•  Clustering:!

– On a page-fault, bring in multiple pages “around” the faulting
page!

– Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages!

•  Working Set Tracking:!
– Use algorithm to try to track working set of application!
– When swapping process back in, swap in working set!

12.7!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Demand paging incurs conflict misses !
•  Q2: True _ False _ LRU can never achieve higher hit rate

than MIN!
•  Q3: True _ False _ The LRU miss rate may increase as the

cache size increases!
•  Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm!
•  Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___ !

!
!
!
!
!

Quiz 12.1: Demand Paging"

12.8!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Demand paging incurs conflict misses !
•  Q2: True _ False _ LRU can never achieve higher hit rate

than MIN!
•  Q3: True _ False _ The LRU miss rate may increase as the

cache size increases!
•  Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm!
•  Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___ !

!
!
!
!
!

Quiz 12.1: Demand Paging"
X"

X"

X"

X"

101"

Page 3

12.9!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Review: Example of General Address Translation"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"
12.10!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Leverage PTE bits!
–  “V”: Valid / Not Valid!

»  “V = 1”: Valid ⇒ Page in memory, PTE points at physical page!
»  “V = 0”: Not Valid ⇒ Page not in memory; use info in PTE to find

page on disk if necessary!
–  “D = 1”: Page modified ⇒ Need to write it back to disk before

replacing it!
–  “U = 1”: Page modified ⇒ Give page a second chance before

being replaced when using Second Chance algorithm!

•  Others:!
–  “R/W”: specifies whether the page can be modified or is read

only!
– Page Access Count: implement a more accurate LRU

algorithms !

Review: Demand Paging Mechanisms"

12.11!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Dual-Mode Operation"
•  Can an application modify its own translation maps or PTE

bits?!
–  If it could, could get access to all of physical memory!
– Has to be restricted somehow!

•  To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):!

–  “Kernel” mode (or “supervisor” or “protected”)!
–  “User” mode (Normal program mode)!
– Mode set with bits in special control register only accessible in

kernel-mode!

•  Intel processors actually have four “rings” of protection:!
– PL (Privilege Level) from 0 – 3!

»  PL0 has full access, PL3 has least!
– Typical OS kernels on Intel processors only use PL0 (“kernel”)

and PL3 (“user”)!
12.12!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

For Protection, Lock User-Programs in Asylum"
•  Idea: Lock user programs in padded cell  

with no exit or sharp objects!
– Cannot change mode to kernel mode!
– Cannot modify translation maps !
– Limited access to memory: cannot  

adversely effect other processes!
– What else needs to be protected?!

•  A couple of issues!
– How to share CPU between kernel and user programs? !
– How does one switch between kernel and user modes?!

» OS → user (kernel → user mode): getting into cell!
» User→ OS (user → kernel mode): getting out of cell!

Page 4

12.13!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

How to get from Kernel→User"
•  What does the kernel do to create a new user process?!

– Allocate and initialize process control block!
– Read program off disk and store in memory!
– Allocate and initialize translation map!

»  Point at code in memory so program can execute!
»  Possibly point at statically initialized data!

– Run Program:!
»  Set machine registers!
»  Set hardware pointer to translation table!
»  Set processor status word for user mode!
»  Jump to start of program!

•  How does kernel switch between processes (we learned about
this!) ?!

– Same saving/restoring of registers as before!
– Save/restore hardware pointer to translation map!

12.14!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

User→Kernel (System Call)"
•  Can’t let inmate (user) get out of padded cell on own!

– Would defeat purpose of protection!!
– So, how does the user program get back into kernel?!

•  System call: Voluntary procedure call into kernel!
– Hardware for controlled User→Kernel transition!
– Can any kernel routine be called?!

» No! Only specific ones!
– System call ID encoded into system call instruction!

»  Index forces well-defined interface with kernel!

I/O: open, close, read, write, lseek!
Files: delete, mkdir, rmdir, chown!
Process: fork, exit, join!
Network: socket create, select!

12.15!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

System Call (cont’d)"

•  Are system calls the same across operating systems?!
– Not entirely, but there are lots of commonalities!
– Also some standardization attempts (POSIX)!

•  What happens at beginning of system call?!
– On entry to kernel, sets system to kernel mode!
– Handler address fetched from table, and Handler started!

•  System Call argument passing:!
–  In registers (not very much can be passed)!
– Write into user memory, kernel copies into kernel memory!
– Every argument must be explicitly checked!!

12.16!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

User→Kernel (Exceptions: Traps and Interrupts)"
•  System call instr. causes a synchronous exception (or “trap”)!

–  In fact, often called a software “trap” instruction!

•  Other sources of Synchronous Exceptions:!
– Divide by zero, Illegal instruction, Bus error (bad address, e.g.

unaligned access)!
– Segmentation Fault (address out of range)!
– Page Fault!
!

•  Interrupts are Asynchronous Exceptions!
– Examples: timer, disk ready, network, etc….!
–  Interrupts can be disabled, traps cannot!!

•  SUMMARY – On system call, exception, or interrupt:!
– Hardware enters kernel mode with interrupts disabled!
– Saves PC, then jumps to appropriate handler in kernel!
– For some processors (x86), processor also saves registers,

changes stack, etc.!

Page 5

12.17!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Administrivia"
•  Please fill the anonymous course survey at

https://www.surveymonkey.com/s/69DZCJS !
•  We’ll make changes based on your feedback!

•  Project 2 Design Doc due Thursday 10/11 at 11:59PM!

•  Midterm next Monday 10/15 during lecture at 4-5:30PM!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Today 10/8) and project one!
•  Midterm review session: Friday 10/12 7-9PM in 306 Soda

Hall!

12.18!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

12.19!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Modern I/O Systems"

12.20!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

The Requirements of I/O"

•  What is the role of I/O?!
– Without I/O, computers are useless (disembodied brains?)!
– But… thousands of devices, each slightly different!

» How can we standardize the interfaces to these devices?!
– Devices unreliable: media failures and transmission errors!

» How can we make them reliable???!
– Devices unpredictable and/or slow!

» How can we manage them if we don’t know what they will do or
how they will perform?!

Page 6

12.21!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

The Requirements of I/O"

•  Some operational parameters:!
– Data granularity: Byte vs. Block!

»  Some devices provide single byte at a time (e.g., keyboard)!
» Others provide whole blocks (e.g., disks, networks, etc.)!

– Access pattern: Sequential vs. Random!
»  Some devices must be accessed sequentially (e.g., tape)!
» Others can be accessed randomly (e.g., disk, cd, etc.)!

– Transfer mechanism: Polling vs. Interrupts!
»  Some devices require continual monitoring!
» Others generate interrupts when they need service!

12.22!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Example Device-Transfer Rates (Sun
Enterprise 6000)"

•  Device Rates vary over many orders of magnitude!
– System better be able to handle this wide range!
– Better not have high overhead/byte for fast devices!!
– Better not waste time waiting for slow devices!

12.23!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

The Goal of the I/O Subsystem"
•  Provide uniform interfaces, despite wide range of different

devices!
– This code works on many different devices:!
 FILE fd = fopen(“/dev/something”,“rw”);

 for (int i = 0; i < 10; i++) {
 fprintf(fd, “Count %d\n”,i);
 }
 close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.!

•  We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture!

– Can only scratch surface! !!
! !!

12.24!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Want Standard Interfaces to Devices"
•  Block Devices: e.g., disk drives, tape drives, DVD-ROM!

– Access blocks of data!
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access!
– Memory-mapped file access possible!

•  Character/Byte Devices: e.g., keyboards, mice, serial ports,
some USB devices!

– Single characters at a time!
– Commands include get(), put()
– Libraries layered on top allow line editing!

•  Network Devices: e.g., Ethernet, Wireless, Bluetooth!
– Different enough from block/character to have own interface!
– Unix and Windows include socket interface!

»  Separates network protocol from network operation!
»  Includes select() functionality!

Page 7

12.25!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

How Does User Deal with Timing?"
•  Blocking Interface: “Wait”!

– When request data (e.g., read() system call), put process to
sleep until data is ready!

– When write data (e.g., write() system call), put process to
sleep until device is ready for data!

•  Non-blocking Interface: “Don’t Wait”!
– Returns quickly from read or write request with count of bytes

successfully transferred to kernel!
– Read may return nothing, write may write nothing!

•  Asynchronous Interface: “Tell Me Later”!
– When requesting data, take pointer to user’s buffer, return

immediately; later kernel fills buffer and notifies user!
– When sending data, take pointer to user’s buffer, return

immediately; later kernel takes data and notifies user !

12.26!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Device"
Controller"

read"
write"

control"
status"

Addressable!
Memory!
and/or!

Queues!Registers"
(port 0x20)"

Hardware!
Controller!

Memory Mapped"
Region: 0x8f008020"

Bus!
Interface!

How does the processor actually talk to
the device?"

•  CPU interacts with a Controller!
– Contains a set of registers that  

can be read and written!
– May contain memory for request  

queues or bit-mapped images !
•  Regardless of the complexity of the connections and buses,

processor accesses registers in two ways: !
–  I/O instructions: in/out instructions (e.g., Intel’s 0x21,AL) !
– Memory mapped I/O: load/store instructions!

» Registers/memory appear in physical address space!
»  I/O accomplished with load and store instructions!

Address+"
Data"

Interrupt Request"

Processor Memory Bus"

CPU"

Regular!
Memory!

Other Devices"
or Buses"Interrupt!

Controller!

Bus!
Adaptor!

Bus!
Adaptor!

12.27!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Example: Memory-Mapped Display
Controller"•  Memory-Mapped:!

– Hardware maps control registers and display
memory into physical address space!

»  Addresses set by hardware jumpers or
programming at boot time!

–  Simply writing to display memory (also called
the “frame buffer”) changes image on screen!

»  Addr: 0x8000F000—0x8000FFFF!
– Writing graphics description to command-

queue area !
»  Say enter a set of triangles that describe

some scene!
»  Addr: 0x80010000—0x8001FFFF!

– Writing to the command register may cause
on-board graphics hardware to do something!

»  Say render the above scene!
»  Addr: 0x0007F004!

•  Can protect with address translation!

Display"
Memory"

0x8000F000"

0x80010000"

Physical Address"
Space"

Status"0x0007F000"
Command"0x0007F004"

Graphics"
Command"

Queue"

0x80020000"

12.28!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Transferring Data To/From Controller"
•  Programmed I/O:!

– Each byte transferred via processor in/out or load/store!
– Pro: Simple hardware, easy to program!
– Con: Consumes processor cycles proportional to data size!

•  Direct Memory Access:!
– Give controller access to memory bus!
– Ask it to transfer data to/from memory directly!

•  Sample interaction with DMA controller (from book):!

Page 8

12.29!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

I/O Device Notifying the OS"
• The OS needs to know when:!

– The I/O device has completed an operation!
– The I/O operation has encountered an error!

•  I/O Interrupt:!
– Device generates an interrupt whenever it needs service!
– Pro: handles unpredictable events well!
– Con: interrupts relatively high overhead !

• Polling:!
– OS periodically checks a device-specific status register!

»  I/O device puts completion information in status register!
– Pro: low overhead!
– Con: may waste many cycles on polling if infrequent or

unpredictable I/O operations!
• Actual devices combine both polling and interrupts!

– For instance – High-bandwidth network adapter: !
»  Interrupt for first incoming packet!
»  Poll for following packets until hardware queues are empty!

12.30!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

I/O Performance"

Response Time = Queue + I/O device service time"

User"
Thread"

Queue"
[OS Paths]"

C
ontroller"

I/O"
device"

•  Performance of I/O subsystem!
– Metrics: Response Time, Throughput!
– Contributing factors to latency:!

»  Software paths (can be loosely modeled by a queue)!
» Hardware controller!
»  I/O device service time!

•  Queuing behavior:!
– Can lead to big increases of latency as utilization approaches

100%!

100%"

Response"
Time (ms)"

Throughput (Utilization)"
(% total BW)"

0"

100"

200"

300"

0%"

12.31!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ With an asynchronous interface, the
writer may need to block until the data is written!

•  Q2: True _ False _ Polling is more efficient that interrupts
for handling very frequent requests!

•  Q3: True _ False _ Segmentation fault is an example of
synchronous exception (trap)!

•  Q4: True _ False _ DMA is more efficient than
programmed I/O for transferring large volumes of data!

•  Q5: In a I/O subsystem the queueing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the request is ___ ms !

!
!
!
!
!

Quiz 12.2: I/O"

12.32!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ With an asynchronous interface, the
writer may need to block until the data is written!

•  Q2: True _ False _ Interrupts are more efficient that
polling for handling very frequent requests!

•  Q3: True _ False _ Segmentation fault is an example of
synchronous exception (trap)!

•  Q4: True _ False _ DMA is more efficient than
programmed I/O for transferring large volumes of data!

•  Q5: In a I/O subsystem the queueing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the request is ___ ms !

!
!
!
!
!

Quiz 12.2: I/O"
X"

X"

X"

X"

50"

Page 9

12.33!10/8/2012! Ion Stoica CS162 ©UCB Fall 2012!

Summary"
•  Dual-Mode!

– Kernel/User distinction: User restricted!
– User→Kernel: System calls, Traps, or Interrupts!

•  I/O Devices Types:!
– Many different speeds (0.1 bytes/sec to GBytes/sec)!
– Different Access Patterns: block, char, net devices!
– Different Access Timing: Non-/Blocking, Asynchronous!

•  I/O Controllers: Hardware that controls actual device!
– CPU accesses thru I/O insts, ld/st to special phy memory!
– Report results thru interrupts or a status register polling!

•  Device Driver: Device-specific code in kernel!

