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•  Q1: True _  False _  During a critical section, a thread can 
be preempted by the CPU dispatcher!

•  Q2: True _  False _  If we use interrupts to implement locks 
we need to enable interrupts before going to sleep (in the 
lock() primitive) !

•  Q3: True _  False _  The order of sem.P() and sem.V() in a 
program is commutative!

•  Q4: True _  False _  With Mesa monitors, the program 
needs to check again the condition (on which it went to 
sleep) after waking up!

•  Q5: True _  False _  In a database (think of the Readers/
Writers problem), a user can read while another one writes !

!
!
!

Quiz 13.1: Synchronization"
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Goals for Today"
•  Disks and SSDs!

•  Important System Properties!

•  File Systems!
– Structure, Naming, Directories, Caching!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz."
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Hard Disk Drives (HDDs)"

IBM/Hitachi Microdrive"

Western Digital Drive!
http://www.storagereview.com/guide/!

Read/Write Head"
Side View"

IBM Personal Computer/AT (1986) 
30 MB hard disk - $500  
30-40ms seek time 
0.7-1 MB/s (est.) 
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Properties of a Magnetic Hard Disk"

•  Properties!
–  Independently addressable element: sector!

» OS always transfers groups of sectors together—“blocks”!
– A disk can access directly any given block either sequentially or 

randomly.!

•  Typical numbers (depending on the disk size):!
– 500 to more than 20,000 tracks per surface!
– 32 to 800 sectors per track!

•  Zoned bit recording!
– Constant bit density: more bits (sectors) on outer tracks!
– Apple ][gs/old Macs: speed varies with track location!

Track"

Sector"

Platters"
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Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surfaces!
•  Read/write: three-stage process:!

– Seek time: position the head/arm over the proper track (into 
proper cylinder)!

– Rotational latency: wait for the desired sector 
to rotate under the read/write head!

– Transfer time: transfer a block of bits (sector) 
under the read-write head!

•  Disk Latency = Queuing Time + Controller time + 
                         Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
– Transfer large group of blocks sequentially from one track!
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Typical Numbers of a Magnetic Disk"
Parameter" Info / Range"
Average seek time! Typically 5-10 milliseconds.!

Depending on reference locality, actual cost may be 
25-33% of this number.!

Average rotational 
latency!

Most laptop/desktop disks rotate at 3600-7200 RPM 
(16-8 ms/rotation). Server disks up to 15,000 RPM.!
Average latency is halfway around disk yielding 
corresponding times of 8-4 milliseconds"

Controller time! Depends on controller hardware!
Transfer time! Typically 50 to 100 MB/s.!

Depends on:!
•  Transfer size (usually a sector): 512B – 1KB per 

sector!
•  Rotation speed: 3600 RPM to 15000 RPM!
•  Recording density: bits per inch on a track!
•  Diameter: ranges from  1 in to 5.25 in!

Cost! Drops by a factor of two every 1.5 years (or even faster).!
$0.05/GB in 2012"
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Disk Performance Examples"
•  Assumptions:!

–  Ignoring queuing and controller times for now!
– Avg seek time of 5ms, !
– 7200RPM ⇒ Time for one rotation: 60000ms/7200 ~= 8ms!
– Transfer rate of 4MByte/s, sector size of 1 KByte!

•  Read sector from random place on disk:!
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 10ms to fetch/put data: 100 KByte/sec"

•  Read sector from random place in same cylinder:!
– Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 5ms to fetch/put data: 200 KByte/sec"

•  Read next sector on same track:!
– Transfer (0.25ms): 4 MByte/sec"

•  Key to using disk effectively (especially for file systems) 
is to minimize seek and rotational delays!
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Disk Scheduling"
•  Disk can do only one request at a time; What order do you 

choose to do queued requests?!
– Request denoted by (track, sector) !

!
•  Scheduling algorithms:!

– First In First Out (FIFO)!
– Shortest Seek Time First!
– SCAN!
– C-SCAN!

•  In our examples we will ignore the sector!
– Consider only track # !

2,3"
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FIFO: First In First Out"
•  Schedule request in the order 

they arrive in the queue!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 2, 1, 3, 6, 2, 5!

•  Pros: Fair among requesters!

•  Cons: Order of arrival may be to 
random spots on the disk ⇒ Very 
long seeks!

!
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SSTF: Shortest Seek Time First"
•  Pick the request that’s closest to 

the head on the disk!
– Although called SSTF,  include  

rotational delay in calculation, as 
rotation can be as long as seek!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 5, 6, 3, 2, 2, 1!

•  Pros: reduce seeks !

•  Cons: may lead to starvation!
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SCAN"
•  Implements an Elevator 

Algorithm: take the closest 
request in the direction of travel!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head is moving towards center!
– Scheduling order: 5, 6, 3, 2, 2, 1!

•  Pros: !
– No starvation!
– Low seek!

•  Cons: favor middle tracks!
!
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C-SCAN"
•  Like SCAN but only serves 

request in only one direction!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head only servers request on its 

way from center towards edge!
– Scheduling order: 5, 6, 1, 2, 2, 3!

•  Pros: !
– Fairer than SCAN!
!

•  Cons: longer seeks on the way 
back!

!
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Solid State Disks (SSDs)"

•  1995 – Replace rotating magnetic media with non-volatile 
memory (battery backed DRAM)!

– Since 2009, use NAND Flash: Single Level Cell (1-bit/cell), 
Multi-Level Cell (2-bit/cell)!

•  Sector addressable, but stores 4-64 “sectors” per memory 
page!

•  No moving parts (no rotate/seek motors)!
– Eliminates seek and rotational delay (0.1-0.2ms access time)!
– Very low power and lightweight !
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SSD Architecture – Reads"

Reading data similar to memory !
read (25µs)!
–  No seek or rotational latency!
–  Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA: 300-600MB/s)!
–  Latency = Queuing Time + Controller time + Xfer Time!
–  Highest Bandwidth: Sequential OR Random reads!
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SSD Architecture – Writes"
•  Writing data is complex! (~200µs – 1.7ms )!

– Can only write empty pages (erase takes ~1.5ms)!
– Controller maintains pool of empty pages by coalescing used 

sectors (read, erase, write), also reserve some % of capacity!

•  Typical steady state behavior when SSD is almost full 
– One erase every 64 or 128 writes (e.g., 4KB/32B = 128) 

•  Write and erase cycles require “high” voltage!
– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!

•  Result is very workload dependent performance!
– Latency = Queuing Time + Controller time (Find Free Block) + 

Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	  of	  thumb:	  writes	  10x	  more	  expensive	  than	  reads,	  	  
and	  erases	  10x	  more	  expensive	  than	  writes	   13.18!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Storage Performance & Price"
Bandwidth 
(sequential R/W) 

Cost/GB Size 

HDD 50-100 MB/s $0.05-0.1/GB 2-4 TB 

SSD1 200-600 MB/s 
(SATA) 
6 GB/s (PCI) 

$1-1.5/GB 200GB-1TB 

DRAM 10-16 GB/s $5-10/GB 64GB-256GB 

18 

BW:	  SSD	  up	  to	  x10	  than	  HDD,	  DRAM	  >	  x10	  than	  SSD	  
Price:	  HDD	  x20	  less	  than	  SSD,	  SSD	  x5	  less	  than	  DRAM	  	  	  	  

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !
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•  Q1: True _  False _  The block is the smallest addressable 
unit on a disk !

•  Q2: True _  False _  An SSD has zero seek time!
•  Q3: True _  False _  For an HDD, the read and write 

latencies are similar!
•  Q4: True _  False _  For an SSD, the read and write 

latencies are similar!
•  Q5: Consider the following sequence of requests (2, 4, 1, 8), 

and assume the head position is on track 9. Then, the order 
in which SSTF services the requests is _________!

!
!
!
!
!

Quiz 12.3: HDDs and SSDs"
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SSD Summary"
•  Pros (vs. hard disk drives):!

– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (20x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller garbage collection (GC) algorithms have major effect 
on performance!

– Limited drive lifetime !
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!
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Administrivia"

•  Midterm Monday 10/15 at 4-5:30PM in 120 Latimer!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Mon 10/8) and project 

one!
•  Midterm review session Friday 7-9PM in 306 Soda Hall!
•  Please remember your class login: you need to write 

it down on the exam! !
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5min Break"
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•  Q1: True _  False _  If a resource type (e.g., disk) has 
multiple instances we cannot have deadlock!

•  Q2: True _  False _  Deadlock implies starvation!
•  Q3: True _  False _  Starvation implies deadlock!
•  Q4: True _  False _  If resources can be preempted from 

threads we cannot have deadlock!
•  Q5: True _  False _  Assume a system in which each thread 

is only allowed to either allocate all resources it needs or 
none of them. In such a system we can still have deadlock.!

!
!
!

Quiz 13.3: Deadlocks"
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Building a File System"
•  File System: Layer of OS that transforms block interface of 

disks (or other block devices) into Files, Directories, etc.!

•  File System Components!
– Disk Management: organizing disk blocks into files!
– Naming: Interface to find files by name, not by blocks!
– Protection: Layers to keep data secure!
– Reliability/Durability: Keeping of files durable despite crashes, 

media failures, attacks, etc.!
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User vs. System View of a File"
•  User’s view: !

– Durable Data Structures!

•  System’s view (system call interface):!
– Collection of Bytes (UNIX)!
– Doesn’t matter to system what kind of data structures you want 

to store on disk!!

•  System’s view (inside OS):!
– Collection of blocks (a block is a logical transfer unit, while a 

sector is the physical transfer unit)!
– Block size ≥ sector size; in UNIX, block size is 4KB!
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Translating from User to System View"

•  What happens if user says: give me bytes 2—12?!
– Fetch block corresponding to those bytes!
– Return just the correct portion of the block!

•  What about: write bytes 2—12?!
– Fetch block!
– Modify portion!
– Write out Block!

•  Everything inside File System is in whole size blocks!
– For example, getc(), putc() ⇒ buffers something like 

4096 bytes, even if interface is one byte at a time!
•  From now on, file is a collection of blocks!

File!
System!
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Disk Management Policies"

•  Basic entities on a disk:!
– File: user-visible group of blocks arranged sequentially in logical 

space!
– Directory: user-visible mapping of names to files!

•  Access disk as linear array of sectors.  !
– Logical Block Addressing (LBA): Every sector has integer address 

from zero up to max number of sectors!
» OS/BIOS must deal with bad sectors!

– Controller translates from address ⇒ physical position!
» Hardware shields OS from structure of disk!
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Disk Management Policies (cont’d)"
•  Need way to track free disk blocks!

– Link free blocks together ⇒ too slow today!
– Use bitmap to represent free space on disk!

•  Need way to structure files: File Header!
– Track which blocks belong at which offsets within the logical 

file structure!

•  Optimize placement of files’ disk blocks to match access 
and usage patterns!
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Designing the File System: Access Patterns"
•  Sequential Access: bytes read in order (“give me the next X 

bytes, then give me next, etc.”)!
– Most of file accesses are of this flavor!

•  Random Access: read/write element out of middle of array 
(“give me bytes i—j”)!

– Less frequent, but still important, e.g., mem. page from swap file!
– Want this to be fast – don’t want to have to read all bytes to get to 

the middle of the file!

•  Content-based Access: (“find me 100 bytes starting with ION”)!
– Example: employee records – once you find the bytes, increase 

my salary by a factor of 2!
– Many systems don’t provide this; instead, build DBs on top of disk 

access to index content (requires efficient random access)!
– Example: Mac OSX Spotlight search (do we need directories?)!
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Designing the File System: Usage Patterns"
•  Most files are small (for example, .login, .c, .java files)!

– A few files are big – executables, swap, .jar, core files, etc.; 
the .jar is as big as all of your .class files combined!

– However, most files are small – .class, .o, .c, .doc, .txt, etc!

•  Large files use up most of the disk space and bandwidth to/
from disk!

– May seem contradictory, but a few enormous files are 
equivalent to an immense # of small files !

•  Although we will use these observations, beware!!
– Good idea to look at usage patterns: beat competitors by 

optimizing for frequent patterns!
– Except: changes in performance or cost can alter usage 

patterns. Maybe UNIX has lots of small files because big files 
are really inefficient?!
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File System Goals"

•  Maximize sequential performance!

•  Efiicient random access to file!

•  Easy management of files (growth, truncation, etc)!
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Linked Allocation: File-Allocation Table (FAT)"

•  MSDOS links pages together to create a file!
– Links not in pages, but in the File Allocation Table (FAT)!

»  FAT contains an entry for each block on the disk!
»  FAT Entries corresponding to blocks of file linked together!

– Access properties:!
»  Sequential access expensive unless FAT cached in memory!
» Random access expensive always, but really expensive if FAT not 

cached in memory!
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Multilevel Indexed Files (UNIX 4.1) "
•  Multilevel Indexed Files:  

 (from UNIX 4.1 BSD)!
– Key idea: efficient for small  

files, but still allow big files!

!

•  File hdr contains 13 pointers !
– Fixed size table, pointers not all equivalent!
– This header is called an “inode” in UNIX!

•  File Header format:!
– First 10 pointers are to data blocks!
– Ptr 11 points to “indirect block” containing 256 block ptrs!
– Pointer 12 points to “doubly indirect block” containing 256 

indirect block ptrs for total of 64K blocks!
– Pointer 13 points to a triply indirect block (16M blocks)!
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Multilevel Indexed Files (UNIX 4.1): 
Discussion "

•  Basic technique places an upper limit on file size that is 
approximately 16Gbytes!

– Designers thought this was bigger than anything anyone 
would need.  Much bigger than a disk at the time…!

– Fallacy: today, Facebook gets hundreds of TBs of logs every 
day!!

•  Pointers get filled in dynamically: need to allocate indirect 
block only when file grows > 10 blocks !

– On small files, no indirection needed!
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Example of Multilevel Indexed Files"
•  Sample file in multilevel  

indexed format:!
– How many accesses for  

block #23? (assume file  
header accessed on open)?!

»  Two: One for indirect block,  
one for data!

– How about block #5?!
» One: One for data!

– Block #340?!
»  Three: double indirect block,  

indirect block, and data!
•  UNIX 4.1 Pros and cons!

– Pros: !Simple (more or less) 
!Files can easily expand (up to a point) 
!Small files particularly cheap and easy!

– Cons: !Lots of seeks 
!Very large files must read many indirect blocks (four 

 !I/O’s per block!)!
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UNIX BSD 4.2"
•  Same as BSD 4.1 (same file header and triply indirect blocks), 

except incorporated ideas from Cray-1 DEMOS:!
– Uses bitmap allocation in place of freelist!
– Attempt to allocate files contiguously!
– 10% reserved disk space (mentioned next slide)!
– Skip-sector positioning (mentioned in two slides)!

•  Problem: When create a file, don’t know how big it will become 
(in UNIX, most writes are by appending)!

– How much contiguous space do you allocate for a file?!
–  In BSD 4.2, just find some range of free blocks!

»  Put each new file at the front of different range!
»  To expand a file, you first try successive blocks in bitmap, then 

choose new range of blocks!
– Also in BSD 4.2: store files from same directory near each other!
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How to Deal with Full Disks?"
•  In many systems, disks are always full!

– EECS department growth: 300 GB to 1TB in a year (now 10s TB)!
– How to fix?  Announce disk space is low, so please delete files?!

» Don’t really work: people try to store their data faster!
– Sidebar: Perhaps we are getting out of this mode with new disks… 

However, let’s assume disks are full for now!
•  Solution:!

– Don’t let disks get completely full: reserve portion!
»  Free count = # blocks free in bitmap!
»  Scheme: Don’t allocate data if count < reserve!

– How much reserve do you need?!
»  In practice, 10% seems like enough!

– Tradeoff: pay for more disk, get contiguous allocation!
»  Since seeks so expensive for performance, this is a very good 

tradeoff!
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Attack of the Rotational Delay"
•  Problem: Missing blocks due to rotational delay!

–  Issue: Read one block, do processing, and read next block.  In 
meantime, disk has continued turning: missed next block! !

– Solution 1: Skip sector positioning (“interleaving”)!
»  Place the blocks from one file on every other block of a track: give 

time for processing to overlap rotation!
– Solution 2: Read ahead: read next block right after first, even if 

application hasn’t asked for it yet!
»  This can be done either by OS (read ahead) !
»  By disk itself (track buffers). Many disk controllers have internal 

RAM that allows them to read a complete track!
•  Important Aside: Modern disks+controllers do many complex 

things “under the covers”!
– Track buffers, elevator algorithms, bad block filtering!

Skip Sector!

Track Buffer!
(Holds complete track)!
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Summary (1/2)"
•  Hard (Magnetic) Disk Performance: !

– Latency = Queuing time + Controller + Seek + Rotational + 
Transfer!

– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available 

empty pages), write burst duration, …!
– Limited drive lifespan!
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Summary (2/2)"
•  File System:!

– Transforms blocks into Files and Directories!
– Optimize for access and usage patterns!
– Maximize sequential access, allow efficient random access!

•  File (and directory) defined by header, called “inode”!
•  Multilevel Indexed Scheme!

–  Inode contains file info, direct pointers to blocks, !
–  indirect blocks, doubly indirect, etc..!

•  4.2 BSD Multilevel index files!
– Optimizations for sequential access: start new files in open 

ranges of free blocks, rotational optimization!
!

!


