
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 13  
 

Disk/SSDs, 
File Systems"

October 10, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

13.2!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ During a critical section, a thread can
be preempted by the CPU dispatcher!

•  Q2: True _ False _ If we use interrupts to implement locks
we need to enable interrupts before going to sleep (in the
lock() primitive) !

•  Q3: True _ False _ The order of sem.P() and sem.V() in a
program is commutative!

•  Q4: True _ False _ With Mesa monitors, the program
needs to check again the condition (on which it went to
sleep) after waking up!

•  Q5: True _ False _ In a database (think of the Readers/
Writers problem), a user can read while another one writes !

!
!
!

Quiz 13.1: Synchronization"

13.3!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ During a critical section, a thread can
be preempted by the CPU dispatcher!

•  Q2: True _ False _ If we use interrupts to implement locks
we need to enable interrupts before going to sleep (in the
lock() primitive) !

•  Q3: True _ False _ The order of sem.P() and sem.V() in a
program is commutative!

•  Q4: True _ False _ With Mesa monitors, the program
needs to check again the condition (on which it went to
sleep) after waking up!

•  Q5: True _ False _ In a database (think of the Readers/
Writers problem), a user can read while another one writes !

!
!
!

Quiz 13.1: Synchronization"
X"

X"

X"

X"

X"

Page 2

13.4!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Goals for Today"
•  Disks and SSDs!

•  Important System Properties!

•  File Systems!
– Structure, Naming, Directories, Caching!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

13.5!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Hard Disk Drives (HDDs)"

IBM/Hitachi Microdrive"

Western Digital Drive!
http://www.storagereview.com/guide/!

Read/Write Head"
Side View"

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

13.6!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Properties of a Magnetic Hard Disk"

•  Properties!
–  Independently addressable element: sector!

» OS always transfers groups of sectors together—“blocks”!
– A disk can access directly any given block either sequentially or

randomly.!

•  Typical numbers (depending on the disk size):!
– 500 to more than 20,000 tracks per surface!
– 32 to 800 sectors per track!

•  Zoned bit recording!
– Constant bit density: more bits (sectors) on outer tracks!
– Apple][gs/old Macs: speed varies with track location!

Track"

Sector"

Platters"

Page 3

13.7!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surfaces!
•  Read/write: three-stage process:!

– Seek time: position the head/arm over the proper track (into
proper cylinder)!

– Rotational latency: wait for the desired sector 
to rotate under the read/write head!

– Transfer time: transfer a block of bits (sector) 
under the read-write head!

•  Disk Latency = Queuing Time + Controller time + 
 Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
– Transfer large group of blocks sequentially from one track!

Sector"
Track"

Cylinder"
Head"

Platter"

Software"
Queue"
(Device Driver)"

H
ardw

are"
C

ontroller"

 Media Time"
(Seek+Rot+Xfer)"

R
equest"

R
esult"

13.8!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Typical Numbers of a Magnetic Disk"
Parameter" Info / Range"
Average seek time! Typically 5-10 milliseconds.!

Depending on reference locality, actual cost may be
25-33% of this number.!

Average rotational
latency!

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.!
Average latency is halfway around disk yielding
corresponding times of 8-4 milliseconds"

Controller time! Depends on controller hardware!
Transfer time! Typically 50 to 100 MB/s.!

Depends on:!
•  Transfer size (usually a sector): 512B – 1KB per

sector!
•  Rotation speed: 3600 RPM to 15000 RPM!
•  Recording density: bits per inch on a track!
•  Diameter: ranges from 1 in to 5.25 in!

Cost! Drops by a factor of two every 1.5 years (or even faster).!
$0.05/GB in 2012"

13.9!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Disk Performance Examples"
•  Assumptions:!

–  Ignoring queuing and controller times for now!
– Avg seek time of 5ms, !
– 7200RPM ⇒ Time for one rotation: 60000ms/7200 ~= 8ms!
– Transfer rate of 4MByte/s, sector size of 1 KByte!

•  Read sector from random place on disk:!
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 10ms to fetch/put data: 100 KByte/sec"

•  Read sector from random place in same cylinder:!
– Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 5ms to fetch/put data: 200 KByte/sec"

•  Read next sector on same track:!
– Transfer (0.25ms): 4 MByte/sec"

•  Key to using disk effectively (especially for file systems)
is to minimize seek and rotational delays!

Page 4

13.10!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Disk Scheduling"
•  Disk can do only one request at a time; What order do you

choose to do queued requests?!
– Request denoted by (track, sector) !

!
•  Scheduling algorithms:!

– First In First Out (FIFO)!
– Shortest Seek Time First!
– SCAN!
– C-SCAN!

•  In our examples we will ignore the sector!
– Consider only track # !

2,3"
2,1"
3,10"
7,2"
5,2"
2,2" Head"User"

Requests"

1"

4"

2"

D
isk H

ead"

3"

13.11!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

FIFO: First In First Out"
•  Schedule request in the order

they arrive in the queue!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 2, 1, 3, 6, 2, 5!

•  Pros: Fair among requesters!

•  Cons: Order of arrival may be to
random spots on the disk ⇒ Very
long seeks!

!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

13.12!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

SSTF: Shortest Seek Time First"
•  Pick the request that’s closest to

the head on the disk!
– Although called SSTF, include  

rotational delay in calculation, as
rotation can be as long as seek!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 5, 6, 3, 2, 2, 1!

•  Pros: reduce seeks !

•  Cons: may lead to starvation!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

Page 5

13.13!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

SCAN"
•  Implements an Elevator

Algorithm: take the closest
request in the direction of travel!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head is moving towards center!
– Scheduling order: 5, 6, 3, 2, 2, 1!

•  Pros: !
– No starvation!
– Low seek!

•  Cons: favor middle tracks!
!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

13.14!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

C-SCAN"
•  Like SCAN but only serves

request in only one direction!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head only servers request on its

way from center towards edge!
– Scheduling order: 5, 6, 1, 2, 2, 3!

•  Pros: !
– Fairer than SCAN!
!

•  Cons: longer seeks on the way
back!

!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

13.15!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Solid State Disks (SSDs)"

•  1995 – Replace rotating magnetic media with non-volatile
memory (battery backed DRAM)!

– Since 2009, use NAND Flash: Single Level Cell (1-bit/cell),
Multi-Level Cell (2-bit/cell)!

•  Sector addressable, but stores 4-64 “sectors” per memory
page!

•  No moving parts (no rotate/seek motors)!
– Eliminates seek and rotational delay (0.1-0.2ms access time)!
– Very low power and lightweight !

Page 6

13.16!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

SSD Architecture – Reads"

Reading data similar to memory !
read (25µs)!
–  No seek or rotational latency!
–  Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA: 300-600MB/s)!
–  Latency = Queuing Time + Controller time + Xfer Time!
–  Highest Bandwidth: Sequential OR Random reads!

Host"
Buffer!
Manager!
(software!
Queue)!

Flash!
Memory!
Controller!

DRAM!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

SATA!

13.17!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

SSD Architecture – Writes"
•  Writing data is complex! (~200µs – 1.7ms)!

– Can only write empty pages (erase takes ~1.5ms)!
– Controller maintains pool of empty pages by coalescing used

sectors (read, erase, write), also reserve some % of capacity!

•  Typical steady state behavior when SSD is almost full
– One erase every 64 or 128 writes (e.g., 4KB/32B = 128)

•  Write and erase cycles require “high” voltage!
– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!

•  Result is very workload dependent performance!
– Latency = Queuing Time + Controller time (Find Free Block) +

Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	 of	 thumb:	 writes	 10x	 more	 expensive	 than	 reads,	 	
and	 erases	 10x	 more	 expensive	 than	 writes	 13.18!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Storage Performance & Price"
Bandwidth
(sequential R/W)

Cost/GB Size

HDD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-600 MB/s
(SATA)
6 GB/s (PCI)

$1-1.5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

18

BW:	 SSD	 up	 to	 x10	 than	 HDD,	 DRAM	 >	 x10	 than	 SSD	
Price:	 HDD	 x20	 less	 than	 SSD,	 SSD	 x5	 less	 than	 DRAM	 	 	 	

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !

Page 7

13.19!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ The block is the smallest addressable
unit on a disk !

•  Q2: True _ False _ An SSD has zero seek time!
•  Q3: True _ False _ For an HDD, the read and write

latencies are similar!
•  Q4: True _ False _ For an SSD, the read and write

latencies are similar!
•  Q5: Consider the following sequence of requests (2, 4, 1, 8),

and assume the head position is on track 9. Then, the order
in which SSTF services the requests is _________!

!
!
!
!
!

Quiz 12.3: HDDs and SSDs"

13.20!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ The block is the smallest addressable
unit on a disk !

•  Q2: True _ False _ An SSD has zero seek time!
•  Q3: True _ False _ For an HDD, the read and write

latencies are similar!
•  Q4: True _ False _ For an SSD, the read and write

latencies are similar!
•  Q5: Consider the following sequence of requests (2, 4, 1, 8),

and assume the head position is on track 9. Then, the order
in which SSTF services the requests is _________!

!
!
!
!
!

Quiz 12.3: HDDs and SSDs"
X"

X"
X"

X"

(8, 4, 2, 1)"

13.21!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

SSD Summary"
•  Pros (vs. hard disk drives):!

– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (20x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller garbage collection (GC) algorithms have major effect
on performance!

– Limited drive lifetime !
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!

Page 8

13.22!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Administrivia"

•  Midterm Monday 10/15 at 4-5:30PM in 120 Latimer!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Mon 10/8) and project

one!
•  Midterm review session Friday 7-9PM in 306 Soda Hall!
•  Please remember your class login: you need to write

it down on the exam! !

13.23!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

13.24!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ If a resource type (e.g., disk) has
multiple instances we cannot have deadlock!

•  Q2: True _ False _ Deadlock implies starvation!
•  Q3: True _ False _ Starvation implies deadlock!
•  Q4: True _ False _ If resources can be preempted from

threads we cannot have deadlock!
•  Q5: True _ False _ Assume a system in which each thread

is only allowed to either allocate all resources it needs or
none of them. In such a system we can still have deadlock.!

!
!
!

Quiz 13.3: Deadlocks"

Page 9

13.25!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ If a resource type (e.g., disk) has
multiple instances we cannot have deadlock!

•  Q2: True _ False _ Deadlock implies starvation!
•  Q3: True _ False _ Starvation implies deadlock!
•  Q4: True _ False _ If resources can be preempted from

threads we cannot have deadlock!
•  Q5: True _ False _ Assume a system in which each thread

is only allowed to either allocate all resources it needs or
none of them. In such a system we can still have deadlock.!

!
!
!

Quiz 13.3: Deadlocks"
X"

X"
X"

X"

X"

13.26!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Building a File System"
•  File System: Layer of OS that transforms block interface of

disks (or other block devices) into Files, Directories, etc.!

•  File System Components!
– Disk Management: organizing disk blocks into files!
– Naming: Interface to find files by name, not by blocks!
– Protection: Layers to keep data secure!
– Reliability/Durability: Keeping of files durable despite crashes,

media failures, attacks, etc.!

13.27!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

User vs. System View of a File"
•  User’s view: !

– Durable Data Structures!

•  System’s view (system call interface):!
– Collection of Bytes (UNIX)!
– Doesn’t matter to system what kind of data structures you want

to store on disk!!

•  System’s view (inside OS):!
– Collection of blocks (a block is a logical transfer unit, while a

sector is the physical transfer unit)!
– Block size ≥ sector size; in UNIX, block size is 4KB!

Page 10

13.28!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Translating from User to System View"

•  What happens if user says: give me bytes 2—12?!
– Fetch block corresponding to those bytes!
– Return just the correct portion of the block!

•  What about: write bytes 2—12?!
– Fetch block!
– Modify portion!
– Write out Block!

•  Everything inside File System is in whole size blocks!
– For example, getc(), putc() ⇒ buffers something like

4096 bytes, even if interface is one byte at a time!
•  From now on, file is a collection of blocks!

File!
System!

13.29!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Disk Management Policies"

•  Basic entities on a disk:!
– File: user-visible group of blocks arranged sequentially in logical

space!
– Directory: user-visible mapping of names to files!

•  Access disk as linear array of sectors. !
– Logical Block Addressing (LBA): Every sector has integer address

from zero up to max number of sectors!
» OS/BIOS must deal with bad sectors!

– Controller translates from address ⇒ physical position!
» Hardware shields OS from structure of disk!

13.30!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Disk Management Policies (cont’d)"
•  Need way to track free disk blocks!

– Link free blocks together ⇒ too slow today!
– Use bitmap to represent free space on disk!

•  Need way to structure files: File Header!
– Track which blocks belong at which offsets within the logical

file structure!

•  Optimize placement of files’ disk blocks to match access
and usage patterns!

Page 11

13.31!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Designing the File System: Access Patterns"
•  Sequential Access: bytes read in order (“give me the next X

bytes, then give me next, etc.”)!
– Most of file accesses are of this flavor!

•  Random Access: read/write element out of middle of array
(“give me bytes i—j”)!

– Less frequent, but still important, e.g., mem. page from swap file!
– Want this to be fast – don’t want to have to read all bytes to get to

the middle of the file!

•  Content-based Access: (“find me 100 bytes starting with ION”)!
– Example: employee records – once you find the bytes, increase

my salary by a factor of 2!
– Many systems don’t provide this; instead, build DBs on top of disk

access to index content (requires efficient random access)!
– Example: Mac OSX Spotlight search (do we need directories?)!

13.32!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Designing the File System: Usage Patterns"
•  Most files are small (for example, .login, .c, .java files)!

– A few files are big – executables, swap, .jar, core files, etc.;
the .jar is as big as all of your .class files combined!

– However, most files are small – .class, .o, .c, .doc, .txt, etc!

•  Large files use up most of the disk space and bandwidth to/
from disk!

– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files !

•  Although we will use these observations, beware!!
– Good idea to look at usage patterns: beat competitors by

optimizing for frequent patterns!
– Except: changes in performance or cost can alter usage

patterns. Maybe UNIX has lots of small files because big files
are really inefficient?!

13.33!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

File System Goals"

•  Maximize sequential performance!

•  Efiicient random access to file!

•  Easy management of files (growth, truncation, etc)!

Page 12

13.34!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Linked Allocation: File-Allocation Table (FAT)"

•  MSDOS links pages together to create a file!
– Links not in pages, but in the File Allocation Table (FAT)!

»  FAT contains an entry for each block on the disk!
»  FAT Entries corresponding to blocks of file linked together!

– Access properties:!
»  Sequential access expensive unless FAT cached in memory!
» Random access expensive always, but really expensive if FAT not

cached in memory!
13.35!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Multilevel Indexed Files (UNIX 4.1) "
•  Multilevel Indexed Files:  

 (from UNIX 4.1 BSD)!
– Key idea: efficient for small  

files, but still allow big files!

!

•  File hdr contains 13 pointers !
– Fixed size table, pointers not all equivalent!
– This header is called an “inode” in UNIX!

•  File Header format:!
– First 10 pointers are to data blocks!
– Ptr 11 points to “indirect block” containing 256 block ptrs!
– Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks!
– Pointer 13 points to a triply indirect block (16M blocks)!

13.36!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Multilevel Indexed Files (UNIX 4.1):
Discussion "

•  Basic technique places an upper limit on file size that is
approximately 16Gbytes!

– Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…!

– Fallacy: today, Facebook gets hundreds of TBs of logs every
day!!

•  Pointers get filled in dynamically: need to allocate indirect
block only when file grows > 10 blocks !

– On small files, no indirection needed!

Page 13

13.37!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Example of Multilevel Indexed Files"
•  Sample file in multilevel  

indexed format:!
– How many accesses for  

block #23? (assume file  
header accessed on open)?!

»  Two: One for indirect block,  
one for data!

– How about block #5?!
» One: One for data!

– Block #340?!
»  Three: double indirect block,  

indirect block, and data!
•  UNIX 4.1 Pros and cons!

– Pros: !Simple (more or less) 
!Files can easily expand (up to a point) 
!Small files particularly cheap and easy!

– Cons: !Lots of seeks 
!Very large files must read many indirect blocks (four 

 !I/O’s per block!)!
! 13.38!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

UNIX BSD 4.2"
•  Same as BSD 4.1 (same file header and triply indirect blocks),

except incorporated ideas from Cray-1 DEMOS:!
– Uses bitmap allocation in place of freelist!
– Attempt to allocate files contiguously!
– 10% reserved disk space (mentioned next slide)!
– Skip-sector positioning (mentioned in two slides)!

•  Problem: When create a file, don’t know how big it will become
(in UNIX, most writes are by appending)!

– How much contiguous space do you allocate for a file?!
–  In BSD 4.2, just find some range of free blocks!

»  Put each new file at the front of different range!
»  To expand a file, you first try successive blocks in bitmap, then

choose new range of blocks!
– Also in BSD 4.2: store files from same directory near each other!

13.39!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

How to Deal with Full Disks?"
•  In many systems, disks are always full!

– EECS department growth: 300 GB to 1TB in a year (now 10s TB)!
– How to fix? Announce disk space is low, so please delete files?!

» Don’t really work: people try to store their data faster!
– Sidebar: Perhaps we are getting out of this mode with new disks…

However, let’s assume disks are full for now!
•  Solution:!

– Don’t let disks get completely full: reserve portion!
»  Free count = # blocks free in bitmap!
»  Scheme: Don’t allocate data if count < reserve!

– How much reserve do you need?!
»  In practice, 10% seems like enough!

– Tradeoff: pay for more disk, get contiguous allocation!
»  Since seeks so expensive for performance, this is a very good

tradeoff!

Page 14

13.40!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Attack of the Rotational Delay"
•  Problem: Missing blocks due to rotational delay!

–  Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! !

– Solution 1: Skip sector positioning (“interleaving”)!
»  Place the blocks from one file on every other block of a track: give

time for processing to overlap rotation!
– Solution 2: Read ahead: read next block right after first, even if

application hasn’t asked for it yet!
»  This can be done either by OS (read ahead) !
»  By disk itself (track buffers). Many disk controllers have internal

RAM that allows them to read a complete track!
•  Important Aside: Modern disks+controllers do many complex

things “under the covers”!
– Track buffers, elevator algorithms, bad block filtering!

Skip Sector!

Track Buffer!
(Holds complete track)!

13.41!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Summary (1/2)"
•  Hard (Magnetic) Disk Performance: !

– Latency = Queuing time + Controller + Seek + Rotational +
Transfer!

– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available

empty pages), write burst duration, …!
– Limited drive lifespan!

13.42!10/10/2012! Ion Stoica CS162 ©UCB Fall 2012!

Summary (2/2)"
•  File System:!

– Transforms blocks into Files and Directories!
– Optimize for access and usage patterns!
– Maximize sequential access, allow efficient random access!

•  File (and directory) defined by header, called “inode”!
•  Multilevel Indexed Scheme!

–  Inode contains file info, direct pointers to blocks, !
–  indirect blocks, doubly indirect, etc..!

•  4.2 BSD Multilevel index files!
– Optimizations for sequential access: start new files in open

ranges of free blocks, rotational optimization!
!

!

