
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 15  
Key-Value Storage, Network Protocols"

October 22, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 15.2!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Key Value Storage"
•  Interface!

– put(key, value); // insert/write “value” associated with “key”!
– value = get(key); // get/read data associated with “key”!

•  Abstraction used to implement !
– File systems: value content à block!
– Sometimes as a simpler but more scalable “database”!

•  Can handle large volumes of data, e.g., PBs!
– Need to distribute data over hundreds, even thousands of

machines!

Lec 15.3!10/22! Ion Stoica CS162 ©UCB Fall 2012!

•  Amazon:!
– Key: customerID!
– Value: customer profile (e.g., buying history, credit card, ..)!

•  Facebook, Twitter:!
– Key: UserID !
– Value: user profile (e.g., posting history, photos, friends, …)!

! ! !!
•  iCloud/iTunes:!

– Key: Movie/song name!
– Value: Movie, Song!

•  Distributed file systems!
– Key: Block ID!
– Value: Block!

Key Values: Examples "

Lec 15.4!10/22! Ion Stoica CS162 ©UCB Fall 2012!

System Examples"
•  Google File System, Hadoop Dist. File Systems (HDFS)"

•  Amazon"
– Dynamo: internal key value store used to power Amazon.com

(shopping cart)!
– Simple Storage System (S3)!

•  BigTable/HBase/Hypertable: distributed, scalable data storage!

•  Cassandra: “distributed data management system” (Facebook)!

•  Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects) !

•  eDonkey/eMule: peer-to-peer sharing system!

Page 2

Lec 15.5!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Key Value Store"
•  Also called a Distributed Hash Table (DHT)!
•  Main idea: partition set of key-values across many

machines!
key, value

…"

Lec 15.6!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Challenges"

•  Fault Tolerance: handle machine failures without losing
data and without degradation in performance!

•  Scalability: "
– Need to scale to thousands of machines !
– Need to allow easy addition of new machines!

•  Consistency: maintain data consistency in face of node
failures and message losses !

•  Heterogeneity (if deployed as peer-to-peer systems):!
– Latency: 1ms to 1000ms!
– Bandwidth: 32Kb/s to 100Mb/s!

…"

Lec 15.7!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Key Questions"
•  put(key, value): where do you store a new (key, value)

tuple?!
•  get(key): where is the value associated with a given

“key” stored?!

•  And, do the above while providing !
– Fault Tolerance!
– Scalability!
– Consistency!

Lec 15.8!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

put(K14, V14)!

pu
t(K

14
, V

14
)!

Page 3

Lec 15.9!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

get(K14)!

ge
t(K

14
)!

V1
4!

V14!

Lec 15.10!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Directory-Based Architecture"
•  Having the master relay the requests à recursive query"
•  Another method: iterative query (this slide)!

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14)!

N3!

Lec 15.11!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Directory-Based Architecture"
•  Having the master relay the requests à recursive query"
•  Another method: iterative query"

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
get(K14)!

get(K14)!

V14!
N3!

Lec 15.12!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Discussion: Iterative vs. Recursive Query"

•  Recursive Query:!
–  Advantages: !

»  Faster, as typically master/directory closer to nodes!
»  Easier to maintain consistency, as master/directory can

serialize puts()/gets()!
– Disadvantages: scalability bottleneck, as all “Values” go through

master/directory!
•  Iterative Query!

–  Advantages: more scalable!
– Disadvantages: slower, harder to enforce data consistency!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!

get(K14)!

ge
t(K

14
)!

V1
4!

V14!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!
get(K14)!

get(K14)!

V14!
N3!

Recursive! Iterative!

Page 4

Lec 15.13!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Fault Tolerance"
•  Replicate value on several nodes!
•  Usually, place replicas on different racks in a datacenter

to guard against rack failures!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14), N1!

N1, N3!

K14! V14!

put(K14, V14)!

Lec 15.14!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Fault Tolerance"
•  Again, we can have !

– Recursive replication (previous slide)!
–  Iterative replication (this slide)!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14)!

N1, N3!

K14! V14!

pu
t(K

14
, V

14
)!

Lec 15.15!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Scalability"
•  Storage: use more nodes!

•  Request Throughput: !
– Can serve requests from all nodes on which a value is

stored in parallel!
– Master can replicate a popular value on more nodes!

•  Master/directory scalability:!
– Replicate it!
– Partition it, so different keys are served by different

masters/directories!
» How do you partition? (p2p DHDT, end of semester) !

Lec 15.16!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Scalability: Load Balancing"
•  Directory keeps track of the storage availability at each node!

– Preferentially insert new values on nodes with more storage
available!

•  What happens when a new node is added?!
– Cannot insert only new values on new node. Why?!
– Move values from the heavy loaded nodes to the new node!

•  What happens when a node fails?!
– Need to replicate values from fail node to other nodes!

Page 5

Lec 15.17!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Replication Challenges"
•  Need to make sure that a value is replicated correctly!

•  How do you know a value has been replicated on
every node? !

– Wait for acknowledgements from every node!

•  What happens if a node fails during replication?!
– Pick another node and try again!

•  What happens if a node is slow?!
– Slow down the entire put()? Pick another node?!

•  In general, with multiple replicas!
– Slow puts and fast gets!

Lec 15.18!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Consistency"

•  How close does a distributed system emulate a single
machine in terms of read and write semantics?!

•  Q: Assume put(K14, V14’) and put(K14, V14’’) are
concurrent, what value ends up being stored?!

•  A: assuming put() is atomic, then either V14’ or V14’’, right?!

•  Q: Assume a client calls put(K14, V14) and then get(K14),
what is the result returned by get()?!

•  A: It should be V14, right? !

•  Above semantics, not trivial to achieve in distributed systems!

Lec 15.19!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Concurrent Writes (Updates)"
•  If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order !

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14’)!

put(K14, V14’)!

K14! V14!

put(K14, V14’’)!

put(K14, V14’’)!

K14! V14’!K14! V14’’!

•  put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order!

•  What does get(K14) return?!
•  Undefined!!

Lec 15.20!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Concurrent Writes (Updates) "
•  If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order !

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14’)!

put(K14, V14’)!

K14! V14!

put(K14, V14’’)!

put(K14, V14’’)!

put(K14, V14’)!

put(K14, V14’')!

K14! V14’’!K14! V14’!

•  put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order!

•  What does get(K14) return?!
•  Undefined!!

Page 6

Lec 15.21!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Read after Write"
•  Read not guaranteed to return value of latest write!

– Can happen if Master processes requests in different threads!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!

get(K14)!

get(K14, V14’)!

K14! V14!

put(K14, V14’)!

put(K14, V14’)!

put(K14, V14’)!

K14! V14’!K14! V14’!

•  get(K14) happens right after
put(K14, V14’)!

•  get(K14) reaches N3 before
put(K14, V14’)!!

 V14!

V14!

Lec 15.22!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Consistency (cont’d)"
•  Large variety of consistency models:!

– Atomic consistency (linearizability): reads/writes (gets/puts)
to replicas appear as if there was a single underlying replica
(single system image)!

»  Think “one updated at a time”!
»  Transactions (later in the class) !

– Eventual consistency: given enough time all updates will
propagate through the system!

» One of the weakest form of consistency; used by many
systems in practice!

– And many others: causal consistency, sequential
consistency, strong consistency, …!

Lec 15.23!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Strong Consistency"
•  Assume Master serializes all operations!

•  Challenge: master becomes a bottleneck!
– Not address here!

•  Still want to improve performance of reads/writes à
quorum consensus!

Lec 15.24!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Quorum Consensus"
•  Improve put() and get() operation performance!

•  Define a replica set of size N!
•  put() waits for acks from at least W replicas!
•  get() waits for responses from at least R replicas!
•  W+R > N!

•  Why does it work?!
– There is at least one node that contains the update!

•  Why you may use W+R > N+1? !

Page 7

Lec 15.25!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Quorum Consensus Example"
•  N=3, W=2, R=2!
•  Replica set for K14: {N1, N2, N4}!
•  Assume put() on N3 fails!

N1! N2! N3! N4!

K14! V14!K14! V14!

pu
t(K

14
, V

14
)!

ACK!

put(K14, V14)!pu
t(K

14
, V

14
)!

ACK!

Lec 15.26!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Quorum Consensus Example"
•  Now, issuing get() to any two nodes out of three will return

the answer!

N1! N2! N3! N4!

K14! V14!K14! V14!

ge
t(K

14
)!

V14
!

get(K14)!

nill!

Lec 15.27!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Conclusions: Key Value Store"

•  Very large scale storage systems!

•  Two operations!
– put(key, value)!
– value = get(key)!

•  Challenges!
– Fault Tolerance à replication!
– Scalability à serve get()’s in parallel; replicate/cache hot

tuples!
– Consistency à quorum consensus to improve put/get

performance!

Lec 15.28!10/22! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ On a single node, a key-value store
can be implemented by a hash-table!

•  Q2: True _ False _ Master can be a bottleneck point for a
key-value store!

•  Q3: True _ False _ Iterative puts achieve lower throughput
than recursive puts!

•  Q4: True _ False _ With quorum consensus, we can
improve read performance at expense of write performance !

Quiz 15.1: Key-Value Store"

Page 8

Lec 15.29!10/22! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ On a single node, a key-value store
can be implemented by a hash-table!

•  Q2: True _ False _ Master can be a bottleneck point for a
key-value store!

•  Q3: True _ False _ Iterative puts achieve lower throughput
than recursive puts!

•  Q4: True _ False _ With quorum consensus, we can
improve read performance at expense of write performance !

Quiz 15.1: Key-Value Store"
X"

X"

X"

X"

Lec 15.30!10/22! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Lec 15.31!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Networking: This Lecture’s Goals"
•  What is a protocol?!

•  Layering!

Many slides generated from my lecture notes by Vern Paxson,
and Scott Shenker."

Lec 15.32!10/22! Ion Stoica CS162 ©UCB Fall 2012!

What Is A Protocol?"

•  A protocol is an agreement on how to communicate!

•  Includes!
–  Syntax: how a communication is specified & structured!

»  Format, order messages are sent and received!
–  Semantics: what a communication means!

»  Actions taken when transmitting, receiving, or when a
timer expires!

Page 9

Lec 15.33!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Examples of Protocols in Human Interactions"

•  Telephone!
1.  (Pick up / open up the phone.)!
2.  Listen for a dial tone / see that you have service.!
3.  Dial!
4.  Should hear ringing …!
5.  Callee: “Hello?”!
6.  Caller: “Hi, it’s Alice ….” 

Or: “Hi, it‘s me” (← what’s that about?)!
7.  Caller: “Hey, do you think … blah blah blah …” pause!
8.  Callee: “Yeah, blah blah blah …” pause"
9.  Caller: Bye!
10.  Callee: Bye!
11.  Hang up!

Lec 15.34!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Examples of Protocols in Human
Interactions"

Asking a question!
1.  Raise your hand.!
2.  Wait to be called on.!

3.  Or: wait for speaker to pause and vocalize!

Lec 15.35!10/22! Ion Stoica CS162 ©UCB Fall 2012!

End System: Computer on the ‘Net"

Internet

Also known as a “host”…
Lec 15.36!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Clients and Servers"

•  Client program!
–  Running on end host!
–  Requests service!
–  E.g., Web browser!

GET /index.html

Page 10

Lec 15.37!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Clients and Servers"

•  Client program!
–  Running on end host!
–  Requests service!
–  E.g., Web browser!

•  Server program!
–  Running on end host!
–  Provides service!
–  E.g., Web server!

GET /index.html

“Site under construction”
Lec 15.38!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Client-Server Communication"

•  Client “sometimes on”!
–  Initiates a request to the

server when interested!
–  E.g., Web browser on your

laptop or cell phone!
–  Doesn’t communicate

directly with other clients!
–  Needs to know the

server’s address!

•  Server is “always on”!
–  Services requests from

many client hosts!
–  E.g., Web server for the
www.cnn.com Web site!

–  Doesn’t initiate contact
with the clients!

–  Needs a fixed, well-known
address!

Lec 15.39!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Peer-to-Peer Communication"

•  Not always-on server at the center of it all!
–  Hosts can come and go, and change addresses!
–  Hosts may have a different address each time!

•  Example: peer-to-peer file sharing (e.g., Bittorrent)!
–  Any host can request files, send files, query to find where a

file is located, respond to queries, and forward queries!
–  Scalability by harnessing millions of peers!
–  Each peer acting as both a client and server!

Lec 15.40!10/22! Ion Stoica CS162 ©UCB Fall 2012!

The Problem"

•  Many different applications!
– email, web, P2P, etc.!

•  Many different network styles and technologies!
– Wireless vs. wired vs. optical, etc.!

•  How do we organize this mess?!

Page 11

Lec 15.41!10/22! Ion Stoica CS162 ©UCB Fall 2012!

The Problem (cont’d)"

•  Re-implement every application for every
technology?!

•  No! But how does the Internet design avoid this?!

Skype " SSH" NFS"

Packet"
Radio"

Coaxial "
cable"

Fiber"
optic"

Application"

Transmission"
Media"

HTTP"

Lec 15.42!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Solution: Intermediate Layers"

•  Introduce intermediate layers that provide set of abstractions
for various network functionality & technologies!

–  A new app/media implemented only once!
–  Variation on “add another level of indirection”!

Skype " SSH" NFS"

Packet"
radio"

Coaxial "
cable"

Fiber"
optic"

Application"

Transmission"
Media"

HTTP"

Intermediate "
layers"

Lec 15.43!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Software System Modularity"
Partition system into modules & abstractions:!
•  Well-defined interfaces give flexibility!

– Hides implementation - thus, it can be freely changed!
–  Extend functionality of system by adding new modules!

•  E.g., libraries encapsulating set of functionality!
•  E.g., programming language + compiler abstracts away

not only how the particular CPU works …!
– … but also the basic computational model!

•  Well-defined interfaces hide information!
–  Isolate assumptions !
–  Present high-level abstractions!
– But can impair performance!

Lec 15.44!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Network System Modularity"

Like software modularity, but:!
•  Implementation distributed across many machines

(routers and hosts)!

•  Must decide:!
– How to break system into modules!

»  Layering!
– What functionality does each module implement!

»  End-to-End Principle"

•  We will address these choices next lecture!

Page 12

Lec 15.45!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Layering: A Modular Approach"

•  Partition the system!
– Each layer solely relies on services from layer below !
– Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
– Hides implementation details!
– Layers can change without disturbing other layers!

Lec 15.46!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Protocol Standardization"
•  Ensure communicating hosts speak the same protocol!

–  Standardization to enable multiple implementations!
– Or, the same folks have to write all the software!

•  Standardization: Internet Engineering Task Force!
–  Based on working groups that focus on specific issues!
–  Produces “Request For Comments” (RFCs)!

»  Promoted to standards via rough consensus and running code!
–  IETF Web site is http://www.ietf.org!
– RFCs archived at http://www.rfc-editor.org!

•  De facto standards: same folks writing the code!
–  P2P file sharing, Skype, <your protocol here>…!

Lec 15.47!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Example: The Internet Protocol (IP):
“Best-Effort” Packet Delivery"

•  Datagram packet switching!
– Send data in packets!
– Header with source & destination address!

•  Service it provides:!
– Packets may be lost!
– Packets may be corrupted!
– Packets may be delivered out of order!

source destination

IP network

Lec 15.48!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Example: Transmission Control
Protocol (TCP)"

•  Communication service!
–  Ordered, reliable byte stream!
–  Simultaneous transmission in both directions!

•  Key mechanisms at end hosts!
–  Retransmit lost and corrupted packets!
–  Discard duplicate packets and put packets in order!
–  Flow control to avoid overloading the receiver buffer!
–  Congestion control to adapt sending rate to network load!

source network destination

TCP connection

Page 13

Lec 15.49!10/22! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the implementation!
•  Q3: True _ False _ Layering helps to improve application

performance!
•  Q4: True _ False _ “Best Effort” packet delivery ensures

that packets are delivered in order!
•  Q5: True _ False _ In p2p systems a node is both a client

and a server!
•  Q6: True _ False _ TCP ensures that each packet is

delivered within a predefined amount of time !

Quiz 15.2: Protocols"

Lec 15.50!10/22! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the implementation!
•  Q3: True _ False _ Layering helps to improve application

performance!
•  Q4: True _ False _ “Best Effort” packet delivery ensures

that packets are delivered in order!
•  Q5: True _ False _ In p2p systems a node is both a client

and a server!
•  Q6: True _ False _ TCP ensures that each packet is

delivered within a predefined amount of time !

Quiz 15.2: Protocols"
X"

X"

X"

X"

X"

X"

Lec 15.51!10/22! Ion Stoica CS162 ©UCB Fall 2012!

Summary"

•  Roles of!
– Standardization!
– Clients, servers, peer-to-peer!

•  Layered architecture as a powerful means for organizing
complex networks!

– Though layering has its drawbacks too!
•  Next lecture!

– Layering!
– End-to-end arguments!

