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Key Values: Examples
+ Amazon: amazon
— Key: customerID

— Value: customer profile (e.g., buying history, credit card, ..)

- Facebook, Twitter: ‘j ’
— Key: UserlD

— Value: user profile (e.g., posting history, photos, friends, ...)
+ iCloud/iTunes:

— Key: Movie/song name O \
— Value: Movie, Song -

+ Distributed file systems
- Key: Block ID @ =
— Value: Block [RIol%5
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Key Value Storage

Interface
— put(key, value); // insert/write “value” associated with “key”
—value = get(key); // get/read data associated with “key”

Abstraction used to implement
— File systems: value content > block
— Sometimes as a simpler but more scalable “database”

Can handle large volumes of data, e.g., PBs

— Need to distribute data over hundreds, even thousands of
machines
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System Examples
+ Google File System, Hadoop Dist. File Systems (HDFS)

+ Amazon

— Dynamo: internal key value store used to power Amazon.com
(shopping cart)

— Simple Storage System (S3)
- BigTable/HBase/Hypertable: distributed, scalable data storage
+ Cassandra: “distributed data management system” (Facebook)

* Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)
+ eDonkey/eMule: peer-to-peer sharing system
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Key Value Store

+ Also called a Distributed Hash Table (DHT)

+ Main idea: partition set of key-values across many
machines

key, value
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Key Questions

+ put(key, value): where do you store a new (key, value)
tuple?

« get(key): where is the value associated with a given
“key” stored?

+ And, do the above while providing
— Fault Tolerance
— Scalability
— Consistency
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Challenges

B S I

+ Fault Tolerance: handle machine failures without losing
data and without degradation in performance

+ Scalability:
— Need to scale to thousands of machines
— Need to allow easy addition of new machines

+ Consistency: maintain data consistency in face of node
failures and message losses

+ Heterogeneity (if deployed as peer-to-peer systems):
— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s
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Directory-Based Architecture

* Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

PUL(K14, V14) -=ommoeme e > Ko N2
KiZ[Na

< / K105/ N50
&
g ¥
K5 [V5 Ki4[Vi4 K105[V105]
N1 N2 NS NSO
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Directory-Based Architecture

+ Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

> K5 | N2
K14 | N3

R/ 4 K105/ N50
Q ! v,/
5N
¥ /
K5 V5 K14 Vi4 K105[V105|
N1 N2 N3 N50
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Directory-Based Architecture

+ Having the master relay the requests - recursive query
» Another method: iterative query
— Return node to requester and let requester contact node
Master/Directory

K5 | N2
K14 | N3
K105/ N50
K5 [V5 K141 Vi4 K105[V105]
N1 N2 NS N50
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Directory-Based Architecture

» Having the master relay the requests - recursive query
« Another method: iterative query (this slide)
— Return node to requester and let requester contact node

Master/Directory

PUL(K14, V1d) =ommemoemeece . K5 | ND

NG 4oL K14 N3

R K105[N50

Py,
ke L
19
N A
K5 [ V5 RT4[ Vi KT05[Vi05|
N, N, N3 Nso
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Discussion: lterative vs. Recursive Query

Master/Directory Master/Directory

get(Ki4y -~
Via<---

N
8

Recursive S lterative

555 gEE G

. Recurswe Query.
— Advantages:
» Faster, as typically master/directory closer to nodes

» Easier to maintain consistency, as master/directory can
serialize puts()/gets()

— Disadvantages: scalability bottleneck, as all “Values” go through
master/directory

+ lterative Query
— Advantages: more scalable

— Disadvantages: slower harder to enforce data con5|stency
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Fault Tolerance

+ Replicate value on several nodes

« Usually, place replicas on different racks in a datacenter
to guard against rack failures

Master/Directory

> K5 [ N2
K14 | N1 N3

by, K105 N50
\*{(’Vq L
ut(K14, V14) .77,
Fi,(,‘--_‘)\ D,
Ki4|Vi4 K5 V5 Ki4|Vi4 K105[V105|
N1 N2 N3 N50
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Scalability

- Storage: use more nodes

* Request Throughput:

— Can serve requests from all nodes on which a value is
stored in parallel

— Master can replicate a popular value on more nodes

+ Master/directory scalability:
— Replicate it

— Partition it, so different keys are served by different
masters/directories

» How do you partition? (p2p DHDT, end of semester)
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Fault Tolerance

+ Again, we can have
— Recursive replication (previous slide)
— Iterative replication (this slide)

Master/Directory

put(K14, V14) -----o-memoeo > ks TNo
N1, N3 <o E K14 | N1.N3
)
N Pupe K105 N50
¥ T,
NG -
K14 Vid K5 [V5 K14 ViZ KT05[V105]
N1 N2 NS N5O
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Scalability: Load Balancing

+ Directory keeps track of the storage availability at each node

— Preferentially insert new values on nodes with more storage
available

» What happens when a new node is added?
— Cannot insert only new values on new node. Why?
— Move values from the heavy loaded nodes to the new node

+ What happens when a node fails?
— Need to replicate values from fail node to other nodes
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Replication Challenges

+ Need to make sure that a value is replicated correctly

+ How do you know a value has been replicated on
every node?

— Wait for acknowledgements from every node

+ What happens if a node fails during replication?
— Pick another node and try again

+ What happens if a node is slow?
— Slow down the entire put()? Pick another node?

+ In general, with multiple replicas
— Slow puts and fast gets
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Concurrent Writes (Updates)

« If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order

uccta, viay TN L put(K14, V14) and put(K14,
e K5 [ N2 V14”) reach N1 and N3 in
put(K14, V14”) =----— K14 [N1N3 D G
K109 [“5<(>’ *  What does get(K14) return?
N -t Undefined!
XV - =
N VA
Jas v =
L
Vi -
K14 [Vid™ K5 [ V5 K14 V14 KT05]V105
N1 N2 NG N50
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Consistency

* How close does a distributed system emulate a single
machine in terms of read and write semantics?

+ Q: Assume put(K14, V14’) and put(K14, V14”) are
concurrent, what value ends up being stored?

+ A: assuming put() is atomic, then either V14’ or V14”’, right?

+ Q: Assume a client calls put(K14, V14) and then get(K14),
what is the result returned by get()?

+ A: It should be V14, right?

» Above semantics, not trivial to achieve in distributed systems
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Concurrent Writes (Updates)

« If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order

Master/Directory put(K14, V14’) and put(K14,

put(K14, V14') ~.__
SN K5 [ N2 V14”) reach N1 and N3 in
put(K14, V14”) ------ K14 [N1N3 REVERD GRS
K105[N50 *  What does get(K14) return?
o P Y ° y\ 2 T
D T =11 Undefined!
NN NG
et VELR
o’&l\ . \s\,\\L' A
5 A
. . VBV3
K14 V14 K5 [ V5 K14 V14 K105|V105
N1 N2 NS NSO
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Read after Write

Consistency (cont’d)
+ Read not guaranteed to return value of latest write + Large variety of consistency models:
— Can happen if Master processes requests in different threads — Atomic consistency (linearizability): reads/writes (gets/puts)
Master/Directory o ETAD e Eame el 2y to.rephcas appear as if there was a single underlying replica
pUL(K14, V14) = =Tz put(K14, V14') (single system image)
g\e,‘fff‘,),ff,,,':tE K141 N1.N3 « get(K14) reaches N3 before » Think “one updated at a time”
€105 N‘r’% = put(K14, V14)! » Transactions (later in the class)
R LARR
Bes " [N A S . . . .
Qo’}@“ Pbﬁ < — Eventual consistency: given enough time all updates will
L A propagate through the system
» One of the weakest form of consistency; used by many
K14 V14 K5 | V5 K14 V14 K705[V105] systems in practice
E E E E — And many others: causal consistency, sequential
N, N, N, N, consistency, strong consistency,
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Strong Consistency Quorum Consensus
» Assume Master serializes all operations » Improve put() and get() operation performance
+ Challenge: master becomes a bottleneck + Define a replica set of size N
— Not address here + put() waits for acks from at least W replicas
- get() waits for responses from at least R replicas
+ Still want to improve performance of reads/writes > * W+R>N
quorum consensus
+ Why does it work?
— There is at least one node that contains the update
* Why you may use W+R > N+17?
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Quorum Consensus Example

+ N=3, W=2, R=2
* Replica set for K14: {N1, N2, N4}

+ Assume put() on N3 fails

S ‘o
\"‘\«’/ > %ﬁ
b(A,«i‘ " <1 % N
Sl g B
e Et VNG
. o) \ £
S V N
v X ‘<
SEARVAL! K14 [ V14
N, N, N, N,
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Conclusions: Key Value Store

+ Very large scale storage systems

+ Two operations
— put(key, value)
— value = get(key)

+ Challenges
— Fault Tolerance - replication
— Scalability > serve get()’s in parallel; replicate/cache hot

tuples
— Consistency - quorum consensus to improve put/get
performance
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Quorum Consensus Example

+ Now, issuing get() to any two nodes out of three will return

the answer
P

B

N .

S

A'/ .
K14 Vid K14 [Vi4
N, N, Ny N,
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Quiz 15.1: Key-Value Store

» Q1: True _ False _ On a single node, a key-value store
can be implemented by a hash-table

» Q2: True _ False _ Master can be a bottleneck point for a
key-value store

» Q3: True _ False _ lterative puts achieve lower throughput
than recursive puts

» Q4: True _ False _ With quorum consensus, we can
improve read performance at expense of write performance
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Quiz 15.1: Key-Value Store

Q1: True X False _ On a single node, a key-value store
can be implemented by a hash-table

Q2: True X False _ Master can be a bottleneck point for a
key-value store

Q3: True _ False X lterative puts achieve lower throughput
than recursive puts

Q4: True X False _ With quorum consensus, we can
improve read performance at expense of write performance
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Networking: This Lecture’s Goals

* What is a protocol?

+ Layering

Many slides generated from my lecture notes by Vern Paxson,
and Scott Shenker.

Lec 15.31
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5min Break
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What Is A Protocol?

+ A protocol is an agreement on how to communicate

* Includes
— Syntax: how a communication is specified & structured
» Format, order messages are sent and received
— Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a
timer expires
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Examples of Protocols in Human Interactions

+ Telephone

(Pick up / open up the phone.)

Listen for a dial tone / see that you have service.
Dial

Should hear ringing ...

Callee: “Hello?”

Caller: “Hi, it’ s Alice ....”
Or: “Hi, it ‘s me” (< what’ s that about?)

7. Caller: “Hey, do you think ... blah blah blah ...” pause
8. Callee: “Yeah, blah blah blah ...” pause

9. Caller: Bye

10. Callee: Bye

11. Hang up

[
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End System: Computer on the ‘Net

T _
W L~

Also known as a “host”..
lon Stoica CS162 ©UCB Fall 2012
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Examples of Protocols in Human
Interactions

Asking a question
1. Raise your hand.
2. Wait to be called on.

3. Or: wait for speaker to pause and vocalize
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Clients and Servers

+ Client program
— Running on end host
— Requests service
— E.g., Web browser
GET /index.html
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Clients and Servers

+ Client program
— Running on end host
— Requests service — Provides service
— E.g., Web browser — E.g., Web server
GET /index.html

@ ) /‘\
W :

+ Server program
— Running on end host

“site under construction”
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Peer-to-Peer Communication

+ Not always-on server at the center of it all
— Hosts can come and go, and change addresses
— Hosts may have a different address each time

+ Example: peer-to-peer file sharing (e.g., Bittorrent)

— Any host can request files, send files, query to find where a
file is located, respond to queries, and forward queries

— Scalability by harnessing millions of peers
— Each peer acting as both a client and server
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Client-Server Communication

- Client “sometimes on” - Server is “always on”

— Initiates a request to the — Services requests from
server when interested many client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn’ t communicate — Doesn’ t initiate contact
directly with other clients with the clients

— Needs to know the — Needs a fixed, well-known

address

server’ s address

®
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The Problem
+ Many different applications
— email, web, P2P, etc.
+ Many different network styles and technologies
— Wireless vs. wired vs. optical, etc.
+ How do we organize this mess?
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The Problem (cont’ d)

Application |Skype| |SSH| | NFS | HTTP

Transmission Coaxial Fiber Packet
Media cable optic Radio

» Re-implement every application for every
technology?

* No! But how does the Internet design avoid this?
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Software System Modularity

Partition system into modules & abstractions:
+ Well-defined interfaces give flexibility
— Hides implementation - thus, it can be freely changed
— Extend functionality of system by adding new modules
+ E.g., libraries encapsulating set of functionality
+ E.g., programming language + compiler abstracts away
not only how the particular CPU works ...
— ... but also the basic computational model
+ Well-defined interfaces hide information
— Isolate assumptions
— Present high-level abstractions
— But can impair performance
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Solution: Intermediate Layers

« Introduce intermediate layers that provide set of abstractions
for various network functionality & technologies
— A new app/media implemented only once
— Variation on “add another level of indirection”

|skype| |ssH| | NFs | [HTTP]

Application

Intermediate
layers

Transmission Coaxial Fiber Packet
Media cable optic radio
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Network System Modularity

Like software modularity, but:

* Implementation distributed across many machines
(routers and hosts)

+ Must decide:
— How to break system into modules
» Layering
— What functionality does each module implement
» End-to-End Principle

» We will address these choices next lecture
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Layering: A Modular Approach

+ Partition the system
— Each layer solely relies on services from layer below
— Each layer solely exports services to layer above

+ Interface between layers defines interaction
— Hides implementation details
— Layers can change without disturbing other layers
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Example: The Internet Protocol (IP):
“Best-Effort” Packet Delivery

- Datagram packet switching

— Send data in packets

— Header with source & destination address
+ Service it provides:

— Packets may be lost

— Packets may be corrupted

— Packets may be delivered out of order

source destination
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Protocol Standardization

+ Ensure communicating hosts speak the same protocol
— Standardization to enable multiple implementations
— Or, the same folks have to write all the software

« Standardization: Internet Engineering Task Force
— Based on working groups that focus on specific issues

— Produces “Request For Comments” (RFCs)
» Promoted to standards via rough consensus and running code

— IETF Web site is http:/www.ietf.org
— RFCs archived at http:/www.rfc-editor.org

+ De facto standards: same folks writing the code
— P2P file sharing, Skype, <your protocol here>...
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Example: Transmission Control
Protocol (TCP)

+ Communication service
— Ordered, reliable byte stream
— Simultaneous transmission in both directions
+ Key mechanisms at end hosts
— Retransmit lost and corrupted packets
— Discard duplicate packets and put packets in order
— Flow control to avoid overloading the receiver buffer
— Congestion control to adapt sending rate to network load
TCP connection

source network  destination
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Quiz 15.2: Protocols

Q1: True _ False _ Protocols specify the syntax and
semantics of communication

Q2: True _ False _ Protocols specify the implementation
Q3: True _ False _ Layering helps to improve application
performance

Q4: True _ False _ “Best Effort” packet delivery ensures
that packets are delivered in order

Q5: True _ False _ In p2p systems a node is both a client
and a server

Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time
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Summary

Roles of
— Standardization
— Clients, servers, peer-to-peer

Layered architecture as a powerful means for organizing
complex networks

— Though layering has its drawbacks too
Next lecture

— Layering

— End-to-end arguments
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Quiz 15.2: Protocols

Q1: True X False _ Protocols specify the syntax and
semantics of communication

Q2: True _ False X Protocols specify the implementation
Q3: True _ False X Layering helps to improve application
performance

Q4: True _ False X “Best Effort” packet delivery ensures
that packets are delivered in order

Q5: TrueX False _ In p2p systems a node is both a client
and a server

Q6: True _ False X TCP ensures that each packet is
delivered within a predefined amount of time
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