CS162
Operating Systems and
Systems Programming
Lecture 17
TCP, Flow Control, Reliability

October 29, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Socket API

+ Socket API: Network programming interface

Application

Socket
I AR R R R RRERRRRRRRRRRI IIIIIAPI
Transport
Network
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.3

Page 1

10/29

Goals for Today

+ Reliable Transfer & flow control

- TCP
— Open connection (3-way handshake)
— Tear-down connection
— Flow control

lon Stoica CS162 ©UCB Fall 2012 Lec 17.2

10/29

BSD Socket API

Created at UC Berkeley (1980s)
Most popular network API

Ported to various OSes, various languages
— Windows Winsock, BSD, OS X, Linux, Solaris, ...
— Socket modules in Java, Python, Perl, ...

Similar to Unix file 1/0 API
— In the form of file descriptor (sort of handle).
— Can share same read()/write()/close() system calls

lon Stoica CS162 ©UCB Fall 2012 Lec 17.4

TCP: Transport Control Protocol

+ Reliable, in-order, and at most once delivery

+ Stream oriented: messages can be of arbitrary length
+ Provides multiplexing/demultiplexing to IP

+ Provides congestion and flow control

+ Application examples: file transfer, chat

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec17.5

Open Connection: 3-Way Handshaking
+ Goal: agree on a set of parameters, i.e., the start sequence
number for each side

— Starting sequence number: sequence of first byte in stream
— Starting sequence numbers are random

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec17.7

Page 2

TCP Service

1) Open connection: 3-way handshaking

2) Reliable byte stream transfer from (IPa,
TCP_Port1) to (IPb, TCP_Port2)

Indication if connection fails: Reset

3) Close (tear-down) connection

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.6

Open Connection: 3-Way Handshaking

+ Server waits for new connection calling listen()
+ Sender call connect() passing socket which contains server’s
IP address and port number

— OS sends a special packet (SYN) containing a proposal for first
sequence number, x

Client (initiator) Server
pctive connect() listen()
Open SYN,
P » SeqNum = x Passive
Open
)
£
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.8

Open Connection: 3-Way Handshaking

« If it has enough resources, server calls accept() to accept
connection, and sends back a SYN ACK packet containing

— client’s sequence number incremented by one, (x + 1)
» Why is this needed?

— A sequence number proposal, y, for first byte server will send

Client (initiator)

Server
Active -
Open connect sYN I
P) b SeqNum = -
Open
= 1
—y and Ack= X+ accept()
SYN and ACK, seqNum =Y
) ‘_ g
£ AC
= K, Ack = ve1
allocate
buffer space
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.9

Close Connection (Two Generals Problem)

+ Goal: both sides agree to close the connection
* Two-army problem:

— “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only

across the area controlled by the white army which can intercept the
messengers.”

* What is the solution?
10/29

lon Stoica CS162 ©UCB Fall 2012 Lec 17.11

Page 3

10/29

3-Way Handshaking (cont’ d)

» Three-way handshake adds 1 RTT delay

. Why?

— Congestion control: SYN (40 byte) acts as cheap probe

— Protects against delayed packets from other connection
(would confuse receiver)

lon Stoica CS162 ©UCB Fall 2012

Lec 17.10
Close Connection
* 4-ways tear down connection
Host 1 Host 2
close
FIN ACK
"W
(W- close
q—— FNAcK
Can retransmit FIN ACK § closed
if it is lost E
closed
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec17.12

Reliable Transfer

+ Retransmit missing packets
— Numbering of packets and ACKs

+ Do this efficiently
— Keep transmitting whenever possible
— Detect missing packets and retransmit quickly

+ Two schemes
— Stop & Wait
— Sliding Window (Go-back-n and Selective Repeat)

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.13

Stop & Wait w/o Errors

« Send; wait for ack; repeat

+ RTT: Round Trip Time (RTT): time it takes a packet to travel
from sender to receiver and back

— One-way latency (d): one way delay from sender and receiver

Sender Receiver
1
Jd RTT=24d

RTT ACK 1 (if latency is
P symmetric)

RTT ACK 2
3

Time
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.15

Page 4

10/29

Detecting Packet Loss?

+ Timeouts
— Sender timeouts on not receiving ACK

+ Missing ACKs
— Sender ACKs each packet

— Receiver detects a missing packet when seeing a gap in
the sequence of ACKs

— Need to be careful! Packets and acks might be
reordered

+ NACK: Negative ACK
— Receiver sends a NACK specifying a packet it is missing

lon Stoica CS162 ©UCB Fall 2012 Lec 17.14

Stop & Wait w/o Errors

» How many packets can you send?
+ 1 packet/RTT
+ Throughput: number of bits delivered to receiver per sec

Sender Receiver
]
RTT ACK 1
2
RTT ACK 2
3
Time

10/29

lon Stoica CS162 ©UCB Fall 2012 Lec 17.16

Stop & Wait w/o Errors

+ Say, RTT = 100ms
+ 1 packet = 1500 bytes
» Throughput = 1500*8bits/0.1s = 120 Kbps

Sender Receiver
]
RTT ACK 1
2
RTT ACK 2
3
Time
10/29 lon Stoica CS162 ©UCB Fall 2012

Lec 17.17

Stop & Wait with Errors

+ If a loss wait for a retransmission timeout and retransmit

+ Ho do you pick the timeout?

Sender Receiver
1
RTT ACK 1
time
out \
Time
10/29 lon Stoica CS162 ©UCB Fall 2012

Lec 17.19

Page 5

Stop & Wait w/o Errors

» Can be highly inefficient for high capacity links

» Throughput doesn’t depend on the network capacity >
even if capacity is 1Gbps, we can only send 120 Kbps!

Sender Receiver

1

RTT ACK 1
2

RTT ACK 2
3

Time
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.18

Sliding Window
+ window = set of adjacent sequence numbers
+ The size of the set is the window size
+ Assume window size is n

« Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

« Sender can send packets in its window

+ Let B be the last received packet without gap by
receiver, then window of receiver = {B+1,..., B+n}

+ Receiver can accept out of sequence, if in window

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.20

Sliding Window w/o Errors

» Throughput = W*packet_size/RTT

Unacked packets

- : Out-0-seq packets
in sender’s window ‘Wlndow size (W) = 3 packets ‘

in receiver’s window

{1 1
{1.2t 2
1,23 3 g
{2.3,4 4 O
{3,4,5} 5
{4,5,6} 6
Time
Sender Receiver
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.21

Sliding Window with Errors

» Two approaches
— Go-Back-n (GBN)
— Selective Repeat (SR)
+ In the absence of errors they behave identically

+ Go-Back-n (GBN)
— Transmit up to n unacknowledged packets
— If timeout for ACK(k), retransmit k, k+1, ...
— Typically uses NACKs instead of ACKs

» Recall, NACK specifies first in-sequence packet missed by
receiver

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.23

Page 6

Example: Sliding Window w/o Errors

» Assume
— Link capacity, C = 1Gbps
— Latency between end-hosts, RTT = 80ms
— packet_length = 1000 bytes
+ What is the window size W to match link’s capacity, C?

+ Solution
We want Throughput = C
Throughput = W*packet_size/RTT
C = W*packet_size/RTT
W = C*RTT/packet_size = 10%ps*80*10-3s/(8000b) = 10* packets

Window size ~ Bandwidth (Capacity), delay (RTT/2)

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.22

GBN Example with Errors

Out-o-seq packets
‘Window size (W) = 3 packets ‘ in receiver’s window

1
2
3 0
o — 0
5 l— ¢ 4is
Timeout 6 ———X missing
Packet 4 {5}
{5.6}
o Why doesn’t
sender retransmit
pA:SIEé?i packet 4 here? % {
nder Receiver
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.24

Selective Repeat (SR)

« Sender: transmit up to n unacknowledged packets;
+ Assume packet k is lost
+ Receiver: indicate packet k is missing (use ACKs)

+ Sender: retransmit packet k

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.25

Summary

+ TCP: Reliable Byte Stream
— Open connection (3-way handshaking)

— Close connection: no perfect solution; no way for two
parties to agree in the presence of arbitrary message
losses (Two General problem)

» Reliable transmission

— S&W not efficient for links with large capacity
(bandwidth) delay product

— Sliding window more efficient but more complex

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec17.27

Page 7

SR Example with Errors

Unacked packets
in sender’s window

‘ Window size (W) = 3 packets ‘

{1} 1
{1,2} 2
{1,2,3} 3
{2,3,4} 4
{3,4,5} 5
{4,5,6} 6
ACK 5
Time
mTE—
Sender Receiver
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.26

Announcements

+ Il no longer be away this Wednesday, so I'll be
teaching the lecture

+ Project 3 initial design due: Thursday, Nov 1

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.28

5min Break

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.29

TCP Flow Control

+ TCP: sliding window protocol at byte (not packet) level
— Go-back-N: TCP Tahoe, Reno, New Reno
— Selective Repeat (SR): TCP Sack

+ Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)

+ The ACK contains sequence number N of next byte the
receiver expects, i.e., receiver has received all bytes in
sequence up to and including N-1

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.31

Page 8

Flow Control

+ Recall: Flow control ensures a fast sender does not
overwhelm a slow receiver

+ Example: Producer-consumer with bounded buffer
(Lecture 5)
— A buffer between producer and consumer
— Producer puts items into buffer as long as buffer not full
— Consumer consumes items from buffer

buffer
Produ-

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.30

TCP Flow Control

N

(TCP/IP) (TCP/IP)

+ TCP/IP implemented by OS (Kernel)
— Cannot do context switching on sending/receiving every packet

» At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet

* Need buffers to match ...
— sending app with sending TCP
— receiving TCP with receiving app

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.32

TCP Flow Control

Sending Process

TCP layer [U) @)[TCP layer

]
o \ /

IP layer ¥ // IP layer

« Three pairs of producer-consumer’ s
@ sending process = sending TCP
@ Sending TCP - receiving TCP
® receiving TCP - receiving process

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.33

Circular Buffer
+ Assume
— A buffer of size N
— A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array

+ Buffer stores at most N consecutive bytes from the stream

+ Byte k stored at position (k mod N) + 1 in the buffer
buﬁel;ed data

sequence # ~ 1
27 28 29 30 31 32 33 34 35 36

——__[n[e[TcTol TwlofRL]
(28 mod 10) +1=9

(35mod10) +1=6

Circular buffer

[L]o] [wlo[m[| [e]t]
(N=10) 1 2 3 45687 8 910
10/29 lon Stoica CS‘IeGr;d@UCB Fal\szt;rzt Lec 17.35

Page 9

TCP Flow Control

Sending Process

TCP layer [TCP layer
‘ [300 bytes
I
o | /
IP layer ¥ // IP layer

+ Example assumptions:
— Maximum IP packet size = 100 bytes
— Size of the receiving buffer (MaxRcvBuf) = 300 bytes

+ Recall, ack indicates the next expected byte in-sequence, not
the last received byte

« Use circular buffers

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.34

TCP Flow Control

Sending Process

LastByteWritten(0) LastByteRead(0)

LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

+ LastByteWritten: last byte written by sending process

- LastByteSent: last byte sent by sender to receiver

» LastByteAcked: last ack received by sender from receiver

+ LastByteRcvd: last byte received by receiver from sender

» NextByteExpected: last in-sequence byte expected by receiver
» LastByteRead: last byte read by the receiving process

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.36

TCP Flow Control

Sending Process

/

LastByteWritten AastByteRead
MaxSendBuffer| [MaxRcvBuffer, |
[1 [1
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

+ AdvertisedWindow: number of bytes TCP receiver can receive

l AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)]

+ SenderWindow: number of bytes TCP sender can send

’ SenderWindow = AdvertisedWindow — (LastByteSent — LastByteAcked) ’

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.37
TCP Flow Control
Sending Process Receiving Process
LastByteWritten(350) LastByteRead(0)

‘ 1, 350

LastByteAcked(0) LastByteSent(0)

+ Sending app sends 350 bytes
* Recall:

LastByteRcvd(0) NextByteExpected(1)

— We assume IP only accepts packets no larger than 100 bytes
— MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

10/29

lon Stoica CS162 ©UCB Fall 2012

Lec 17.39

Page 10

TCP Flow Control

Sending Process

/

LastByteWritt:r\ LastByteRead
MaxSendBuffer] | | m
[1 [I
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

« Still true if receiver missed data....

l AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)]

+ WriteWindow: number of bytes sending process can write

’ WriteWindow = MaxSendBuffer — (LastByteWritten — LastByteAcked) ’

10/29

lon Stoica CS162 ©UCB Fall 2012

Lec 17.38

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
101, 350

‘t 11)‘0

LastByteAcked(0) LastByteSent(100)

{[1,100]}

Data[1,100]

/ LastByteRead(0)
1,

LastByteRcvd(100) NextByteExpected(101)

{[1,100]}

Sender sends first packet (i.e., first 100

10/29

bytes) and receiver gets the packet

Lec 17.40

TCP Flow Control

Sending Process
LastByteWritten(350)
il

‘t 100 101, 350

LastByteSent(100)

Receiving Process

/ LastByteRead(0)
il

LastByteAcked(0) LastByteRcvd(100) NextByteExpected(101)

{11,1007} Data[1,100]

{[1,100]}

Receiver sends ack for 15t packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
=300 - (100 — 0) = 200

10/2
TCP Flow Control
Receiving Process
LastByteWritten(350) / LastByteRead(0)
‘ 1,200 201, 350 1,200
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,1007}
{[1,200]} Data[101,200]
200 {11,200]}
1, AduWiIn =
AC\(;\O)
Sender sends 2" packet (i.e., next 100
1029 bytes) and receiver gets the packet Loc 1748

Page 11

Sending Process

TCP Flow Control

Receiving Process

LastByteWritten(350) / LastByteRead(0)
LastByteAcked‘(O)\LastByteSent(ZOO) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200]
{[1,2001}

0004
\=101 pawin =2
Ack=1""

10/29

Sender sends 2" packet (i.e., next 100

bytes) and receiver gets the packet Lec 17.42

Sending Process

TCP Flow Control

Receiving Process

| "
o
E_o

LastByteWritten(350) LastByteRead(100)
‘ 1,200 201, 350 101,
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,2001} Data[101,200]
0 {11,200]}
1, AGVWIn =
AC\(‘\O)

10/29

Receiving TCP delivers first 100 bytes to

recienving process Lec 17.44

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
‘ 1,200 201, 350 ey,
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,1001} Data[1,100]
{[1,100]}
{[1,2001} Data[101,200]
200, {[1,200]}
W\ﬂ = 0
4, AQV i = 20!
CK,‘\O s <N\N\\‘\
a k=201 A
Receiver sends ack for 2" packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
1012 =300 - (200 — 100) = 200
TCP Flow Control
Receiving Process
LastByteWritten(350) LastByteRead(100)
301,
‘ =00 350
J \
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,1007}
{[1,200]} Data[101,200] 1200
{[1,300]} D 7300] @, I
Sender stops sending as window full
SndWin = AdvWin - (LastByteSent — LastByteAcked)
10/29 =300-(300-0)=0 17.47

Page 12

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
‘ 1.200 201, 301, 101,
f 2 300 \’3'—')0
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200] P
11,3007} Data{26T,300 01,2000
=X

Sender sends 3™ packet (i.e., next 100

10/29

bytes) and the packet is lost

Lec 17.46

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
301,
‘ =00 350
J \
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1o
{11,300} m% {12001}
le— Ack=101, AdvWin = 200
» Sender gets ack for 15t packet
« AdWin =200
10/29 Lec 17.48

TCP Flow Control

Sending Process

Receiving Process

LastByteRead(100)
101,

i

LastByteAcked(100) LastByteSent(300)

LastByteWritten(350)
301,
101,300 \ 350

LastByteRcvd(200) NextByteExpected(201)

{[1,100]} Data[1,100]

{[1,200] Data[101,200 {11,100}

{[1,300]} _Dataf20T,300] {[1,200]}
{101, 300} [« Ack=101, AdvWin = 200

» Ack for 1st packet (ack indicates next byte
expected by receiver)

10/29

» Receiver no longer needs first 100 bytes

Lec 17.49

TCP Flow Control

Sending Process

Receiving Process

,7 101,300

LastByteWritten(350)
301,
350

LastByteRead(100)

i
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1012
(11,3000} WW {[101,200]}
101,300\ _ A
{201, 300} [« Ack=201, AdvWin = 200
* Receiver gets ack for 2" packet
10/29 * AdvWin = 200 bytes Lec 1751

Page 13

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
301,
101,800 oo

LastByteRead(100)
101,

1
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1o
{11,300)) Datef20T,300] {1,2001

{101, 300}

le— Ack=101, AdvWin = 200

Sender still cannot send as window full
SndWin = AdvWin - (LastByteSent — LastByteAcked)

10/29

=200-(300-100) =0

lec 17.50

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)

LastByteRead(100)

,7 201, 301,
/

300 350
LastByteAcked(200) LastByteSent(300)

LastByteRcvd(200) NextByteExpected(201)

{[1,100]} Data[1,100]
{[1,200]} Data[101,200 {11,100}
{[1,300]} WW {[101,200]}
{101, 300} — =X
{201, 300} fe— Ack=201, AdvWin = 200

Sender can now send new data!
1029 SndWin = AdvWin — (LasByteSent — LastByteAcked) = 100 1752

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
—

Receiving Process

\LastByteReadu 00)
"""" | 301,

LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{[1,1001} Data[1,100]
{[1,100]}
{[1,2001} Data[101,200 1012
{11,300 Datef20T,300] {[101,2001

{101, 300} //
{1201,3507} Data[301,350]

10/29

—.l {[101,200],[301,350]

lon Stoica CS162 ©UCB Fall 2012 Lec 17.53

TCP Flow Control

Sending Process

Receiving Process

LastByteAcked(200)

{[201,350]}

LastByteWritten(350)
201, 301,
300 350

—

LastByteSent(350)

LastByteRcvd(350) NextByteExpected(201)

Data[301,350]

101 200112Q1,350]

» Ack still specifies 201 (first byte out of sequence)
100 | * AdvWin =50, so can sender re-send 39 packet? |,

Page 14

TCP Flow Control

Sending Process
LastByteWr|tten(350) \LastByteReadﬁ 00)
201yw8oty || 0 T
300 350

301,

LastByteAcked(ZOO) LastByteSent(350) LastByteRcvd(350) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1012
{11,301 Datef20T,300] {101,2003

{101, 300} .//
{201,350} Data[301,350]

{201, 350}

{[101,200],[301,350]
l—— Ack=201, AdvWin = 50

10/29

lon Stoica CS162 ©UCB Fall 2012 Lec 17.54

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
201, 301,
300 350

—

LastByteAcked(200) LastByteSent(350)

{1201,350]} Data

LastByteRcvd(350) NextByteExpected(201)

301,350]
{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50

» Ack still specifies 201 (first byte out of sequence)
120 | * AdvWin =50, so can sender re-send 3 packet? 56

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
—

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

Receiving Process

\LastByte Read(100)
T 1101, 201, 301,

LastByteAcked(200)

{[201,350]} Data[301,350]

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}

Yes! Sender can re-send 2™ packet since it’s in existing
102d Window — won'’t cause receiver window to grow

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
—

LastByteSent(350) | LastByteRcvd(350) NextByteExpected(351)

Receiving Process

101, 350

LastByteAcked(200)

{[201,350]} Data[301,350]
{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50

1 Data[20 ,300
]7.59

g fe— Ack=351, AdvWin = 50

» Sender gets 3 packet and sends Ack for 351
oA AdvWin = 50

Page 15

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
—

LastByteSent(350) | LastByteRcvd(350) NextByteExpected(351)

Receiving Process

101, 350

LastByteAcked(200)

{[201,350]} Data[301,350]

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}

Yes! Sender can re-send 2" packet since it’s in existing
102d Window — won'’t cause receiver window to grow

TCP Flow Control

Sending Process

LastByteWritten(350k iiiiiii
|] | o

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

Receiving Process

101, 350

LastByteAcked(350)

Data[301,350]

{[201,350]}

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}
g f— Ack=351, AdvWin = 50

[Sender DONE with sending all bytes!]

10/29 Lec 17.60

Discussion

+ Why not have a huge buffer at the receiver (memory is
cheap!)?

+ Sending window (SndWnd) also depends on network
congestion
— Congestion control: ensure that a fast receiver doesn’t

overwhelm a router in the network (discussed in detail in
eel122)

+ In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)

10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.61

Summary: Networking (Internet Layering)

Any distributed protocol

Application
Layer || Data (e.g., HTTP, Skype, p2p,
ﬁ KV protocol in your project)
Send segments to another
Transport | T"_laé‘s process running on same or
Layer L different node
ﬁ Send packets to another node
Network (| | Net [Trans possibly located in a different
Layer Hdr. | Hdr network
@. - Send frames to other node
Datalink Frame | Net. | Trans directly connected to same
Data ["pge | Har | H :
Layer B Lt £ physical network
Phgcal Send bits to other node directly
L; or [101010100110101110 connected to same physical
Y network
10/29 lon Stoica CS162 ©UCB Fall 2012 Lec 17.63

Page 16

10/29

Summary: Reliability & Flow Control

» Flow control: three pairs of producer consumers
— Sending process > sending TCP
— Sending TCP - receiving TCP
— Receiving TCP > receiving process

+ Reliable transmission

— S&W not efficient for links with large capacity
(bandwidth) delay product

— Sliding window far more efficient
« TCP: Reliable Byte Stream
— Open connection (3-way handshaking)

— Close connection: no perfect solution; no way for two
parties to agree in the presence of arbitrary message
losses (Two General problem)

lon Stoica CS162 ©UCB Fall 2012 Lec 17.62

