Goals of Today’s Lecture

« TCP flow control (continued)
CS162
Operating Systems and « Transactions (ACID semantics)
Systems Programming
Lecture 18
TCP’s Flow Control, Transactions

October 31, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.2
TCP Flow Control TCP Flow Control
TCP layer ! / TCP layer i
‘ \L 300 bytes ﬁ LastByteWritten(0) LastByteRead(0)
o [/ | |
IP layer ! IP layer LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)
+ Example assumptions: + LastByteWritten: last byte written by sending process
— Maximum IP packet size = 100 bytes - LastByteSent: last byte sent by sender to receiver
— Size of the receiving buffer (MaxRcvBuf) = 300 bytes + LastByteAcked: last ack received by sender from receiver
+ Recall, ack indicates the next expected byte in-sequence, not + LastByteRcvd: last byte received by receiver from sender
the last received byte - NextByteExpected: last in-sequence byte expected by receiver
+ Use circular buffers - LastByteRead: last byte read by the receiving process
10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.3 10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.4

Page 1

TCP Flow Control

Sending Process
d

LastByteWritten A.astByteRead
MaxSendBuffer] [MaxRcvBuffer, |
[| c °l
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

+ AdvertisedWindow: number of bytes TCP receiver can receive

l AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)]

+ SenderWindow: number of bytes TCP sender can send
’ SenderWindow = AdvertisedWindow — (LastByteSent — LastByteAcked) ’

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.5

TCP Flow Control

Sending Process

LastByteWritten(350)
‘ 1, 350

Receiving Process

LastByteRead(0)

LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

+ Sending app sends 350 bytes
* Recall:
— We assume IP only accepts packets no larger than 100 bytes
— MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 bytes

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.7

Page 2

TCP Flow Control

Sending Process

/
LastByteWriﬂ;\' LastByteRead
MaxSendBuffer|
[1
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

« Still true if receiver missed data....

l AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)]

+ WriteWindow: number of bytes sending process can write
’ WriteWindow = MaxSendBuffer — (LastByteWritten — LastByteAcked) ’

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.6

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) / LastByteRead(0)
1, 1,
‘ 100 101, 350
1
LastByteAcked(0) LastByteSent(100) LastByteRcvd(100) NextByteExpected(101)
{[1,1001} Data[1,100]

{[1,100]}

Sender sends first packet (i.e., first 100

bytes) and receiver gets the packet

10/31 Lec 18.8

TCP Flow Control

Sending Process

Receiving Process

/ LastByteRead(0)
il

LastByteWritten(350)
il
Jr 100 101, 350

LastByteAcked(0) LastByteSent(100)

{[1,100]}

LastByteRcvd(100) NextByteExpected(101)

Data[1,100]

{[1,100]}

Receiver sends ack for 15t packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
1073 =300 — (100 — 0) = 200

TCP Flow Control

Sending Process

Receiving Process

/ LastByteRead(0)
1, 101,

LastByteWritten(350)
L1000 504, 350
; 100 200 ?

LastByteAcked(0) LastByteSent(200)

LastByteRcvd(200) NextByteExpected(201)

{[1,100]} Data[1,100]
{[1,200]} Data[101,200] {[1,1000
200+ {[1,2007}
1 AdWiIn =
P\CK;\O ’
Sender sends 2" packet (i.e., next 100
1031 bytes) and receiver gets the packet Lec 1810

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) / LastByteRead(0)
‘ 1, 200 201, 350 1, 200
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,1001} Data[1,100]
{[1,1007}
{[1,200]} Data[101,200]
0 (11,2001}
1, AW =
AC\(;\O)

bytes) and receiver gets the packet

Sender sends 2M packet (i.e., next 100
10/31 Lec 18.11

TCP Flow Control

Sending Process

Receiving Process

| "
o
|

LastByteWritten(350) LastByteRead(100)
‘ 1,200 201, 350 iyl
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200]
200 11,2001}
1, AdUWNIN =
P\CK;\O ’
Receiving TCP delivers first 100 bytes to
1081 recienving process Lec18.42

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
‘ 1,200 201, 350 ey,
) S~
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,1001} Data[1,100] 1100
{[1,2001} Data[101,200] o, I
. 200 — {[1,2001}
guWin = =7 200
101, N NN =
he k=201 AN

Receiver sends ack for 2" packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
=300 — (200 — 100) = 200

10/3

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
301,
“r 1,300 350
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,1001} Data[1,100]
{[1,1007}
{[1,200]} Data[101,200] 200
{[1,300]} D 7300 . I

Sender stops sending as window full
SndWin = AdvWin - (LastByteSent — LastByteAcked)
=300-(300-0)=0

10/31 []18.15

Page 4

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
‘ 1.200 201, 301, 101,
; 2 300 \'3%0
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}

{[1,200]} Data[101,200] P
11,3007} Data{26T,300 11,2000

10/31 [

Sender sends 3™ packet (i.e., next 100

bytes) and the packet is lost

] Lec 18.14

Sending Process

TCP Flow Control

Receiving Process

LastByteWritten(350)
301,
‘ 1,300 350
! \
LastByteAcked(0) LastByteSent(300)
{[1,100]} Data[1,100]
{[1,2001} Data[101,200
{[1,3001} Damm{

le— Ack=101, AdvWin = 200

LastByteRead(100)

LastByteRcvd(200) NextByteExpected(201)

{[1,100]}
{[1,200]}

.
[o
10/31

Sender gets ack for 15t packet
AdWin = 200

] Lec 18.16

TCP Flow Control

Sending Process

Receiving Process

LastByteRead(100)
101,

i

LastByteAcked(100) LastByteSent(300)

LastByteWritten(350)
301,
101,300 \ 350

LastByteRcvd(200) NextByteExpected(201)

{[1,100]} Data[1,100]

{[1,200] Data[101,200 {11,100}

{[1,300]} _Dataf20T,300] {[1,200]}
{101, 300} |« Ack=101, AdvWin = 200

» Ack for 1st packet (ack indicates next byte

expected by receiver)

+ Receiver no longer needs first 100 bytes

Lec 18.17

TCP Flow Control

Sending Process

Receiving Process

,7 101,300

LastByteWritten(350)
301,
350

LastByteRead(100)

1
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,1007}
{[1,200]} Data[101,200 1012
{[1,300]} WM {[101,200]}
101,300 f—__ N
{201, 300} == Ack=201, AdvWin = 200
* Receiver gets ack for 2" packet
10131 * AdvWin = 200 bytes Lec 18.19

Page 5

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
301,
101,800 o

LastByteRead(100)
101,

i
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1o
{11,300)) Datef20T,300] {1,2001

{101, 300}

le— Ack=101, AdvWin = 200

Sender still cannot send as window full
SndWin = AdvWin - (LastByteSent — LastByteAcked)

10/31

=200-(300-100)=0

ec 18.18

TCP Flow Control

Sending Process

Receiving Process

LastByteRead(100)

\

LastByteAcked(200) LastByteSent(300)

LastByteWritten(350)
201, 301,
300 350

/

LastByteRcvd(200) NextByteExpected(201)

{[1,100]} Data[1,100]
{[1,200]} Data[101,200 {11,100}
{[1,300]} WW {[101,200]}
A

101,300 f—__

{201, 300} [+~ Ack=201, AdvWin = 200

Sender can now send new data!
1081 SndWin = AdvWin — (LasByteSent — LastByteAcked) = 100 18.20

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/

LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{[1,1001} Data[1,100]
{[1,100]}
{[1,2001} Data[101,200 1012
{11,300 _Datet?0T,300] {[101,2001

{101, 300} |//
{[201,350]} Data[301,350]

j {[101,200],[301,350]

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.21

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/

LastByteSent(350) | LastByteRcvd(350) NextByteExpected(201)

Receiving Process

LastByteAcked(200)

{[201,350]} Data[301,350]

.
0
10/31

101 200112Q1,350]

Ack still specifies 201 (first byte out of sequence)
AdvWin = 50, so can sender re-send 3 packet? |,,

Page 6

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/

LastByteAcked(200) LastByteSent(350) | LastByteRcvd(350) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,100]}
{[1,200]} Data[101,200 1012
{11,301 Datef20T,300] {101,200

{101, 300} .//
{201,350} Data[301,350]

{201, 350}

{[101,200],[301,350]

l— Ack=201, AdvWin = 50

Lec 18.22

10/31 lon Stoica CS162 ©UCB Fall 2012

TCP Flow Control

Sending Process
LastByteWritten(350) \LastByteRead(1 00)
201, 301,
300 350
/ \

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)

LastByteAcked(200)

{[201,350]} Data[301,350]

{[101,200],[301,350]
{201, 350} |e— Ack=201, AdvWin = 50

.
.
10/31 [

Ack still specifies 201 (first byte out of sequence)
AdvWin = 50, so can sender re-send 3 packet? |,,

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

Receiving Process

LastByteAcked(200)

{[201,350]} Data[301,350]

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}

Yes! Sender can re-send 2™ packet since it’s in existing
1031 Window — won'’t cause receiver window to grow

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/ \

LastByteSent(350) | LastByteRcvd(350) NextByteExpected(351)

Receiving Process

101, 350

LastByteAcked(200)

{[201,350]} Data[301,350]
{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50

1 Data[20 ,300
]8.27

g f— Ack=351, AdvWin = 50

» Sender gets 3 packet and sends Ack for 351
wl* AdvWin = 50

Page 7

TCP Flow Control

Sending Process
LastByteWritten(350)
201, 301,
300 350
/

LastByteSent(350) | LastByteRcvd(350) NextByteExpected(351)

Receiving Process

101, 350

LastByteAcked(200)

{[201,350]} Data[301,350]

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}

Yes! Sender can re-send 2" packet since it’s in existing
1031 Window — won'’t cause receiver window to grow

TCP Flow Control

Sending Process

LastByteWritten(350)\ \LastByteRead(1 00)
| _[‘ : i 101,350

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

Receiving Process

LastByteAcked(350)

Data[301,350]

{[201,350]}

{[101,200],[301,350]
{201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

{[101,350]}
g f— Ack=351, AdvWin = 50

[Sender DONE with sending all bytes!]

10/31 Lec 18.28

10/31

Quiz 18.1: Flow-Control

Q1: True _ False _ Flow control is responsible with
detecting packet losses and retransmissions

Q2: True _ False _ Flow control always allows a sender to
resend a lost packet

Q3: True _ False _ With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)

Q4: True _ False _ Flow control makes sure the sender
doesn’t overflow the receiver

lon Stoica CS162 ©UCB Fall 2012 Lec 18.29

10/31

Quiz 18.1: Flow-Control

Q1: True _ False X Flow control is responsible with
detecting packet losses and retransmissions

Q2: True X False _ Flow control always allows a sender to
resend a lost packet

Q3: True _ False X With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)

Q4: True X False _ Flow control makes sure the sender
doesn’t overflow the receiver

lon Stoica CS162 ©UCB Fall 2012 Lec 18.30

10/31

Summary: Reliability & Flow Control

+ Flow control: three pairs of producer consumers
— Sending process - sending TCP
— Sending TCP - receiving TCP
— Receiving TCP -> receiving process

» AdvertisedWindow: tells sender how much new data
can the receiver buffer

+ SenderWindow: specifies how many more bytes can
sender sent

— Depends on AdvertisedWindow and on data sent since
sender got AdvertisedWindow

lon Stoica CS162 ©UCB Fall 2012 Lec 18.31

10/31

5min Break

lon Stoica CS162 ©UCB Fall 2012 Lec 18.32

Need for Transactions

+ Example: assume two clients updating same value in a key-
value (KV) store at the same time

— Client A subtracts 75; client B adds 25

gCIientA gcnem B

KV Store

get(17) K V

100
100-75 =25

..... put(17, 125) |----- 17| 125 || Client B's

put(17, 25) === DL T G
---------- N been lost!
time
10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.33

Discussion

* How does client B get the lock?
— Pooling: periodically check whether the lock is free

— KV storage system keeps a list of clients waiting for the lock,
and gives the lock to next client in the list

+ What happens if the client holding the lock crashes?

+ Network latency might be higher than update operation
— Most of the time in critical section spent waiting for messages

+ What is the lock granularity?
— Do you lock every key? Do you lock the entire storage?
— What are the tradeoffs?

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.35

Page 9

Solution?

+ How did we solve such problem on a single machine?
— Critical section, e.g., use locks
— Let’s applv same solution here...

gcnem A gcnem B

lock_acquire() lock_acquire()

9et(17) fommmmmmeeee = ;
100 Client B can’t
/ acquire lock (A
100-75% 25 holds it
put(17, 25)[~========mmmmee__ |

Now, B can
time| get the lock!

lock_release()[™~~~ """

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.34

Better Solution

+ Interleave reads and writes from different clients

+ Provide the same semantics as clients were running
one at a time

+ Transaction — database/storage sytem’s abstract view
of a user program, i.e., a sequence of reads and writes

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.36

“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice';

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_ name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob';

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name

FROM accounts WHERE name = 'Bob');
COMMIT; --COMMIT WORK
Transfer $100 from Alice’s account to Bob’s account
10/31 Ton Stoica C5162 ©UCB Fall 2012 Lec 18.3
Atomicity

¢ A transaction
— might commit after completing all its operations, or

— it could abort (or be aborted) after executing some
operations

e Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

- Database/storage system /ogs all actions so that it can
undo the actions of aborted transactions

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.39

Page 10

The ACID properties of Transactions

« Atomicity: all actions in the transaction happen, or none
happen

« Consistency: transactions maintain data integrity, e.g.,
— Balance cannot be negative
— Cannot reschedule meeting on February 30

- Isolation: execution of one transaction is isolated from that
of all others; no problems from concurrency

« Durability: if a transaction commits, its effects persist
despite crashes

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.38

Consistency

¢ Data follows integrity constraints (ICs)

 If database/storage system is consistent before
transaction, it will be after

¢ System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)
— A database enforces some ICs, depending on the ICs
declared when the data has been created
— Beyond this, database does not understand the semantics of
the data (e.g., it does not understand how the interest on a
bank account is computed)

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.40

Isolation

e Each transaction executes as if it was running by itself
- It cannot see the partial results of another transaction

« Techniques:
- Pessimistic — don’ t let problems arise in the first place

- Optimistic — assume conflicts are rare, deal with them after
they happen

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.41

This Lecture

¢ Deal with (I)solation, by focusing on concurrency
control

o Next lecture focus on (A)tomicity, and partially on
(D)urability

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.43

Page 11

10/31

Durability

+ Data should survive in the presence of
— System crash
— Disk crash - need backups

« All committed updates and only those updates are reflected in the
database

- Some care must be taken to handle the case of a crash
occurring during the recovery process!

lon Stoica CS162 ©UCB Fall 2012 Lec 18.42

10/31

Example

« Consider two transactions:
—T1: moves $100 from account A to account B

’TI:A := A-100; B := B+100;

—T2: moves $50 from account B to account A

’TZ:A := A+50; B := B-50; ‘

» Each operation consists of (1) a read, (2) an addition/
subtraction, and (3) a write

+ Example: A = A-100
Read(®); // R(A)
A := A - 100;
Write(RA); // W(RA)

lon Stoica CS162 ©UCB Fall 2012 Lec 18.44

Example (cont’ d)

» Database only sees reads and writes

Database View

’Tl: A:=A-100; B:

:=B+100;

>]Tl:R(A) ,W(R),R(B),W(B)

’TZ: A:=A+50; B

:=B-50;

9’T2:R(A),W(A),R(B),W(B)

|
|

+ Assume initially:
+ What is the legal
—A=$950
—B =$550

A =$1000 and B = $500
outcome of running T1 and T27?

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.45
Example (cont’ d)
’Tl: A:=A-100; B:=B+100;| Initial values:
A:=1000
T2: A:=A+50; B:=B-50; B:=500
+ What is the outcome of the following execution?
T1:R(A),W(RA), R(B),W(B)
T2: A=900 |R(R),W(A),R(B),W(B) B=550

| A=950 | | B=450]

+ What is the outcome of the following execution?

T1:R(B),

W(A),R(B),W(B)

T2 R(R),W(A),R(B),W(B) |_;;900|

|_E/3;550 |

10/31

| A=1050 | [B=450 |

lon Stoica CS162 ©UCB Fall 2012

Lost $50!

Page 12

Example (cont’ d)

’Tl: A:=A-100; B:=B+100; Initial values:
A:=1000
T2: A:=A+50; B:=B-50; B:=500

+ What is the outcome of the following execution?

T1:R(A),W(A),R(B),W(B)

12: ["A=900 |B=6mR<A>,W<A>,R,W
| A=950 | [B=550]
+ What is the outcome of the following execution?

T1: R(A)IW(A)IR(B)IW(B>

T2:R(A),W(A),R(B),W(B) A=950 B=550
| A=1050] [B=450]
10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.46

Transaction Scheduling

» Why not run only one transaction at a time?

» Answer: low system utilization

— Two transactions cannot run simultaneously even if they
access different data

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.48

Goals of Transaction Scheduling

+ Maximize system utilization, i.e., concurrency
— Interleave operations from different transactions

* Preserve transaction semantics
— Semantically equivalent to a serial schedule, i.e., one
transaction runs at a time
Ti:R, W, R, W T2:R,W,R, R, W
I

/\

Serial schedule (T1, then T2): Serial schedule (T2, then T1):
R,W,R,W,R, W, R, R, W R,W,R,R,W,R, W, R, W

L J

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.49

Summary

¢ Transaction: a sequence of storage operations

e ACID:
— Atomicity: all operations in a transaction happen, or none happens

— Consistency: if database/storage starts consistent, it ends up
consistent

— Isolation: execution of one transaction is isolated from another
— Durability: the results of a transaction persists

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.51

Page 13

Two Key Questions

1) Is a given schedule equivalent to a serial execution of
transactions?

Schedule: R, R, W, W, R, R, R, W, W
= 7 = ‘7

Serial schedule (T1, then T2):
RW,RWR,WR,R W

Serial schedule (T2, then T1):
R,W,R,R,W,R, W,R, W

2) How do you come up with a schedule equivalent to a
serial schedule?

10/31 lon Stoica CS162 ©UCB Fall 2012 Lec 18.50

