
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 18  
TCP’s Flow Control, Transactions"

October 31, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 18.2!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Goals of Today’s Lecture"
•  TCP flow control (continued)!

•  Transactions (ACID semantics)!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Lec 18.3!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes!

•  Recall, ack indicates the next expected byte in-sequence, not
the last received byte !

•  Use circular buffers!

Sending Process" Receiving Process"

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!

Lec 18.4!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

•  LastByteWritten: last byte written by sending process !
•  LastByteSent: last byte sent by sender to receiver!
•  LastByteAcked: last ack received by sender from receiver!
•  LastByteRcvd: last byte received by receiver from sender!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving process!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(0)"

Page 2

Lec 18.5!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  AdvertisedWindow: number of bytes TCP receiver can receive!

•  SenderWindow: number of bytes TCP sender can send!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!

Lec 18.6!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  Still true if receiver missed data….!

•  WriteWindow: number of bytes sending process can write!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!

Lec 18.7!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

•  Sending app sends 350 bytes!
•  Recall: !

– We assume IP only accepts packets no larger than 100 bytes!
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 bytes!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
1, 350!

Lec 18.8!10/31! Ion Stoica CS162 ©UCB Fall 2012!

1, 350!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1,
100!

Data[1,100]!{[1,100]}!
{[1,100]}!

tim
e!Sender sends first packet (i.e., first 100

bytes) and receiver gets the packet!

Page 3

Lec 18.9!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiver sends ack for 1st packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
 = 300 – (100 – 0) = 200"

Ack=101, AdvWin = 200!

1, 350!

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1,
100!

Lec 18.10!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1,
100!

Ack=101, AdvWin = 200!

Lec 18.11!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Ack=101, AdvWin = 200!

Lec 18.12!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiving TCP delivers first 100 bytes to
recienving process!

Ack=101, AdvWin = 200!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

1, !
100!

Page 4

Lec 18.13!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Ack=101, AdvWin = 200!

Ack=201, AdvWin = 200!

Receiver sends ack for 2nd packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
 = 300 – (200 – 100) = 200"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 18.14!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100
bytes) and the packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 18.15!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

 = 300 – (300 – 0) = 0"

1,300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 18.16!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 1st packet!
•  AdWin = 200"

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Page 5

Lec 18.17!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Ack for 1st packet (ack indicates next byte
expected by receiver)!

•  Receiver no longer needs first 100 bytes!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 18.18!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full!
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

 = 200 – (300 – 100) = 0"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 18.19!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver gets ack for 2nd packet!
•  AdvWin = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Lec 18.20!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(200)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100"

101,
200!

LastByteSent(300)"

Page 6

Lec 18.21!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Lec 18.22!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Lec 18.23!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?! Lec 18.24!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

Page 7

Lec 18.25!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since it’s in existing
window – won’t cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

201,
300!

Lec 18.26!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since it’s in existing
window – won’t cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

Lec 18.27!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

•  Sender gets 3rd packet and sends Ack for 351!
•  AdvWin = 50!

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

201,
300!

301,
350!

Lec 18.28!10/31! Ion Stoica CS162 ©UCB Fall 2012!

TCP Flow Control"

LastByteAcked(350)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Sender DONE with sending all bytes! !

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

Page 8

Lec 18.29!10/31! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Flow control is responsible with
detecting packet losses and retransmissions !

•  Q2: True _ False _ Flow control always allows a sender to
resend a lost packet!

•  Q3: True _ False _ With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)!

•  Q4: True _ False _ Flow control makes sure the sender
doesn’t overflow the receiver!

Quiz 18.1: Flow-Control"

Lec 18.30!10/31! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ Flow control is responsible with
detecting packet losses and retransmissions !

•  Q2: True _ False _ Flow control always allows a sender to
resend a lost packet!

•  Q3: True _ False _ With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)!

•  Q4: True _ False _ Flow control makes sure the sender
doesn’t overflow the receiver!

Quiz 18.1: Flow-Control"
X!

X!

X!

X!

Lec 18.31!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Summary: Reliability & Flow Control"
•  Flow control: three pairs of producer consumers!

– Sending process à sending TCP!
– Sending TCP à receiving TCP!
– Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new data
can the receiver buffer!

•  SenderWindow: specifies how many more bytes can
sender sent!

– Depends on AdvertisedWindow and on data sent since
sender got AdvertisedWindow!

Lec 18.32!10/31! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Page 9

Lec 18.33!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Need for Transactions"
•  Example: assume two clients updating same value in a key-

value (KV) store at the same time!
– Client A subtracts 75; client B adds 25!

KV Store!

time!

Client A! Client B!

17 !100 !
K! V!get(17)!

100!
100!

get(17)!

17 !125 !

17 !25 !

100-75 = 25!

put(17, 25)! put(17, 125)!

100+25 = 25!

Client B’s
update has
been lost!!

Lec 18.34!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Solution?"
•  How did we solve such problem on a single machine?!

– Critical section, e.g., use locks!
– Let’s apply same solution here… ! !!

KV Store!

time!

Client A! Client B!

17 !100 !
K! V!

get(17)!
100!

lock_acquire()!

17 !25 !

100-75 = 25!

put(17, 25)!

lock_acquire()!

lock_release()!

Client B can’t
acquire lock (A
holds it)!

Now, B can
get the lock!!

Lec 18.35!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Discussion"
•  How does client B get the lock?!

– Pooling: periodically check whether the lock is free!
– KV storage system keeps a list of clients waiting for the lock,

and gives the lock to next client in the list!

•  What happens if the client holding the lock crashes?!

•  Network latency might be higher than update operation!
– Most of the time in critical section spent waiting for messages!

•  What is the lock granularity?!
– Do you lock every key? Do you lock the entire storage?!
– What are the tradeoffs?!

Lec 18.36!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Better Solution"
•  Interleave reads and writes from different clients!

•  Provide the same semantics as clients were running
one at a time!

•  Transaction – database/storage sytem’s abstract view
of a user program, i.e., a sequence of reads and writes!

Page 10

Lec 18.37!10/31! Ion Stoica CS162 ©UCB Fall 2012!

“Classic” Example: Transaction

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account!
Lec 18.38!10/31! Ion Stoica CS162 ©UCB Fall 2012!

The ACID properties of Transactions"
•  Atomicity: all actions in the transaction happen, or none

happen!

•  Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative

– Cannot reschedule meeting on February 30!

•  Isolation: execution of one transaction is isolated from that
of all others; no problems from concurrency!

•  Durability: if a transaction commits, its effects persist
despite crashes!

Lec 18.39!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Atomicity"
•  A transaction

– might commit after completing all its operations, or
–  it could abort (or be aborted) after executing some

operations

•  Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

–  Database/storage system logs all actions so that it can
undo the actions of aborted transactions

Lec 18.40!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Consistency"
•  Data follows integrity constraints (ICs)

•  If database/storage system is consistent before
transaction, it will be after

•  System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)
– A database enforces some ICs, depending on the ICs

declared when the data has been created
– Beyond this, database does not understand the semantics of

the data (e.g., it does not understand how the interest on a
bank account is computed)

Page 11

Lec 18.41!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Isolation"
•  Each transaction executes as if it was running by itself

–  It cannot see the partial results of another transaction

•  Techniques:
–  Pessimistic – don’t let problems arise in the first place

–  Optimistic – assume conflicts are rare, deal with them after
they happen

Lec 18.42!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Durability"
•  Data should survive in the presence of!

– System crash!
– Disk crash à need backups!

•  All committed updates and only those updates are reflected in the
database

–  Some care must be taken to handle the case of a crash
occurring during the recovery process!

Lec 18.43!10/31! Ion Stoica CS162 ©UCB Fall 2012!

This Lecture"
•  Deal with (I)solation, by focusing on concurrency

control

•  Next lecture focus on (A)tomicity, and partially on
(D)urability

Lec 18.44!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Example"
•  Consider two transactions:!

– T1: moves $100 from account A to account B!
! ! !!

– T2: moves $50 from account B to account A!

•  Each operation consists of (1) a read, (2) an addition/
subtraction, and (3) a write !

•  Example: A = A-100!

T1:A := A-100; B := B+100; !

Read(A); // R(A)

A := A – 100;
Write(A); // W(A)

T2:A := A+50; B := B-50; !

Page 12

Lec 18.45!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Example (cont’d)"
•  Database only sees reads and writes!

•  Assume initially: A = $1000 and B = $500!
•  What is the legal outcome of running T1 and T2?!

– A = $950!
– B = $550 !

T1:R(A),W(A),R(B),W(B)!T1: A:=A-100; B:=B+100; ! à!

T2:R(A),W(A),R(B),W(B)!T2: A:=A+50; B:=B-50; ! à!

Database View!

Lec 18.46!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Example (cont’d)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A),R(B),W(B)

T2: R(A),W(A),R(B),W(B) !

T1: R(A),W(A),R(B),W(B)

T2:R(A),W(A),R(B),W(B) ! B=550!A=950!
B=450!A=1050!

A=900! B=600!
A=950! B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Initial values:!
A:=1000
B:=500

Lec 18.47!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Example (cont’d)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A),R(B),W(B) !

T1:R(A), W(A),R(B),W(B)

T2: R(A),W(A),R(B),W(B) !B=550!A=900!
B=450!A=1050!

A=900!
A=950! B=450!

B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Lost $50!"

Initial values:!
A:=1000
B:=500

Lec 18.48!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Transaction Scheduling"

•  Why not run only one transaction at a time?!

•  Answer: low system utilization!
– Two transactions cannot run simultaneously even if they

access different data!

Page 13

Lec 18.49!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Goals of Transaction Scheduling"

•  Maximize system utilization, i.e., concurrency!
–  Interleave operations from different transactions!

•  Preserve transaction semantics!
– Semantically equivalent to a serial schedule, i.e., one

transaction runs at a time !

T1: R, W, R, W! T2: R, W, R, R, W!

R, W, R, W, R, W, R, R, W!
Serial schedule (T1, then T2):!

R, W, R, R, W, R, W, R, W!
Serial schedule (T2, then T1):!

Lec 18.50!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Two Key Questions"

1)  Is a given schedule equivalent to a serial execution of
transactions? !

2)  How do you come up with a schedule equivalent to a
serial schedule?!

R, W, R, W, R, W, R, R, W! R, W, R, R, W, R, W, R, W!

R, R, W, W, R, R, R, W, W!Schedule:!

Serial schedule (T1, then T2):!
:!

Serial schedule (T2, then T1):!

≡ ?≡ ?

Lec 18.51!10/31! Ion Stoica CS162 ©UCB Fall 2012!

Summary"
•  Transaction: a sequence of storage operations

•  ACID:
–  Atomicity: all operations in a transaction happen, or none happens
–  Consistency: if database/storage starts consistent, it ends up

consistent
–  Isolation: execution of one transaction is isolated from another
–  Durability: the results of a transaction persists!

