CS162 Operating Systems and Systems Programming Lecture 18 TCP's Flow Control, Transactions

October 31, 2012
Ion Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals of Today's Lecture

- TCP flow control (continued)
- Transactions (ACID semantics)

Note: Some slides and/or pictures in the following are adapted from lecture notes by Mike Franklin.

10/31 Ion Stoica CS162 ©UCB Fall 2012

Quiz 18.1: Flow-Control

- Q1: True _ False _ Flow control is responsible with detecting packet losses and retransmissions
- Q2: True _ False _ Flow control always allows a sender to resend a lost packet
- Q3: True _ False _ With TCP, the receiving OS can deliver data to the application out-of-sequence (i.e., with gaps)
- Q4: True _ False _ Flow control makes sure the sender doesn't overflow the receiver

10/31 Ion Stoica CS162 @UCB Fall 2012 Lec 18.29

Summary: Reliability & Flow Control

- · Flow control: three pairs of producer consumers
 - Sending process → sending TCP
 - Sending TCP → receiving TCP
 - Receiving TCP → receiving process
- AdvertisedWindow: tells sender how much new data can the receiver buffer
- SenderWindow: specifies how many more bytes can sender sent
 - Depends on AdvertisedWindow and on data sent since sender got AdvertisedWindow

10/31 Ion Stoica CS162 ©UCB Fall 2012

Quiz 18.1: Flow-Control

- Q1: True _ False X Flow control is responsible with detecting packet losses and retransmissions
- Q2: True X False _ Flow control always allows a sender to resend a lost packet
- Q3: True _ False X With TCP, the receiving OS can deliver data to the application out-of-sequence (i.e., with gaps)
- Q4: True X False _ Flow control makes sure the sender doesn't overflow the receiver

10/31 Ion Stoica CS162 @UCB Fall 2012 Lec 18.30

5min Break

10/31 Ion Stoica CS162 ©UCB Fall 2012 Lec 18.32

Discussion

- How does client B get the lock?
 - Pooling: periodically check whether the lock is free
 - KV storage system keeps a list of clients waiting for the lock, and gives the lock to next client in the list
- What happens if the client holding the lock crashes?
- Network latency might be higher than update operation
 - Most of the time in critical section spent waiting for messages
- · What is the lock granularity?
 - Do you lock every key? Do you lock the entire storage?
 - What are the tradeoffs?

10/31 Ion Stoica CS162 ©UCB Fall 2012 Lec 18.35

Better Solution

- · Interleave reads and writes from different clients
- Provide the same semantics as clients were running one at a time
- Transaction database/storage sytem's abstract view of a user program, i.e., a sequence of reads and writes

10/31 Ion Stoica CS162 ©UCB Fall 2012

"Classic" Example: Transaction

BEGIN; --BEGIN TRANSACTION

UPDATE accounts SET balance = balance 100.00 WHERE name = 'Alice';

UPDATE branches SET balance = balance 100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob':

UPDATE branches SET balance = balance +
 100.00 WHERE name = (SELECT branch_name
 FROM accounts WHERE name = 'Bob');

COMMIT; --COMMIT WORK

Transfer \$100 from Alice's account to Bob's account

10/31

10/31

Ion Stoica CS162 ©UCB Fall 2012

c 18.37

Lec 18.39

The ACID properties of Transactions

- Atomicity: all actions in the transaction happen, or none happen
- Consistency: transactions maintain data integrity, e.g.,
 - Balance cannot be negative
 - Cannot reschedule meeting on February 30
- Isolation: execution of one transaction is isolated from that of all others; no problems from concurrency
- Durability: if a transaction commits, its effects persist despite crashes

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.38

Atomicity

- A transaction
 - might commit after completing all its operations, or
 - it could *abort* (or be aborted) after executing some operations
- Atomic Transactions: a user can think of a transaction as always either executing all its operations, or not executing any operations at all
 - Database/storage system logs all actions so that it can undo the actions of aborted transactions

Ion Stoica CS162 ©UCB Fall 2012

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.40

Consistency

- Data follows integrity constraints (ICs)
- If database/storage system is consistent before transaction, it will be after
- System checks ICs and if they fail, the transaction rolls back (i.e., is aborted)
 - A database enforces some ICs, depending on the ICs declared when the data has been created
 - Beyond this, database does not understand the semantics of the data (e.g., it does not understand how the interest on a bank account is computed)

Isolation

- Each transaction executes as if it was running by itself
 - It cannot see the partial results of another transaction
- · Techniques:
 - Pessimistic don't let problems arise in the first place
 - Optimistic assume conflicts are rare, deal with them after they happen

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.41

Durability

- · Data should survive in the presence of
 - System crash
 - Disk crash → need backups
- All committed updates and only those updates are reflected in the database
 - Some care must be taken to handle the case of a crash occurring during the recovery process!

10/31 Ion Stoica CS162 ©UCB Fall 2012

This Lecture

- Deal with (I)solation, by focusing on concurrency control
- Next lecture focus on (A)tomicity, and partially on (D)urability

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.43

Example

- · Consider two transactions:
 - T1: moves \$100 from account A to account B

$$T1:A := A-100; B := B+100;$$

- T2: moves \$50 from account B to account A

$$T2:A := A+50; B := B-50;$$

- Each operation consists of (1) a read, (2) an addition/ subtraction, and (3) a write
- Example: A = A-100

```
Read(A); // R(A)
A := A - 100;
Write(A); // W(A)
```

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.44

Transaction Scheduling

- Why not run only one transaction at a time?
- · Answer: low system utilization
 - Two transactions cannot run simultaneously even if they access different data

Ion Stoica CS162 ©UCB Fall 2012

Goals of Transaction Scheduling

- · Maximize system utilization, i.e., concurrency
 - Interleave operations from different transactions
- Preserve transaction semantics
 - Semantically equivalent to a serial schedule, i.e., one transaction runs at a time

Summary

- Transaction: a sequence of storage operations
- ACID:
 - Atomicity: all operations in a transaction happen, or none happens
 - Consistency: if database/storage starts consistent, it ends up consistent
 - Isolation: execution of one transaction is isolated from another
 - Durability: the results of a transaction persists

10/31

Ion Stoica CS162 ©UCB Fall 2012

Lec 18.51

Two Key Questions

1) Is a given schedule equivalent to a serial execution of transactions?

2) How do you come up with a schedule equivalent to a serial schedule?

Lec 18.50

10/31 Ion Stoica CS162 ©UCB Fall 2012