
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 19  
Transactions, Two Phase Locking (2PL),

Two Phase Commit (2PC)"

November 5, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 19.2!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Goals of Today’s Lecture"
•  Transaction scheduling !

•  Two phase locking (2PL) and strict 2PL!

•  Two-phase commit (2PC):!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Lec 19.3!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Goals of Transaction Scheduling"

•  Maximize system utilization, i.e., concurrency!
–  Interleave operations from different transactions!

•  Preserve transaction semantics!
– Semantically equivalent to a serial schedule, i.e., one

transaction runs at a time !
!
!

T1: R, W, R, W! T2: R, W, R, R, W!

R, W, R, W, R, W, R, R, W!
Serial schedule (T1, then T2):!

R, W, R, R, W, R, W, R, W!
Serial schedule (T2, then T1):!

Lec 19.4!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Two Key Questions"

1)  Is a given schedule equivalent to a serial execution of
transactions? !

!

2)  How do you come up with a schedule equivalent to a
serial schedule?!

R, W, R, W, R, W, R, R, W! R, W, R, R, W, R, W, R, W!

R, R, W, W, R, R, R, W, W!Schedule:!

Serial schedule (T1, then T2):!
:!

Serial schedule (T2, then T1):!

≡ ?≡ ?

Page 2

Lec 19.5!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Transaction Scheduling"
•  Serial schedule: A schedule that does not interleave

the operations of different transactions!
– Transactions run serially (one at a time)!

!
•  Equivalent schedules: For any storage/database

state, the effect (on storage/database) and output of
executing the first schedule is identical to the effect of
executing the second schedule!

!
•  Serializable schedule: A schedule that is equivalent

to some serial execution of the transactions!
–  Intuitively: with a serializable schedule you only see

things that could happen in situations where you were
running transactions one-at-a-time!

!
Lec 19.6!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Anomalies with Interleaved Execution "
•  May violate transaction semantics, e.g., some data

read by the transaction changes before committing!

•  Inconsistent database state, e.g., some updates are
lost!

•  Anomalies always involves a “write”; Why?!

Lec 19.7!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Anomalies with Interleaved Execution "
•  Read-Write conflict (Unrepeatable reads)!

•  Violates transaction semantics!
•  Example: Mary and John want to buy a TV set on

Amazon but there is only one left in stock!
–  (T1) John logs first, but waits…!
–  (T2) Mary logs second and buys the TV set right away!
–  (T1) John decides to buy, but it is too late…!

T1:R(A), R(A),W(A)
T2: R(A),W(A) !

Lec 19.8!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Anomalies with Interleaved Execution "
•  Write-read conflict (reading uncommitted data)!

•  Example: !
–  (T1) A user updates value of A in two steps!
–  (T2) Another user reads the intermediate value of A,

which can be inconsistent!
– Violates transaction semantics since T2 is not supposed

to see intermediate state of T1 !
!

T1:R(A),W(A), W(A)
T2: R(A), … !

Page 3

Lec 19.9!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Anomalies with Interleaved Execution "
•  Write-write conflict (overwriting uncommitted data)!

•  Get T1’s update of B and T2’s update of A!
•  Violates transaction serializability!
•  If transactions were serial, you’d get either:!

– T1’s updates of A and B!
– T2’s updates of A and B!

T1:W(A), W(B)
T2: W(A),W(B) !

Lec 19.10!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Conflict Serializable Schedules
•  Two operations conflict if they

– Belong to different transactions
– Are on the same data
– At least one of them is a write

•  Two schedules are conflict equivalent iff:
–  Involve same operations of same transactions
– Every pair of conflicting operations is ordered the same way

•  Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

Lec 19.11!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Conflict Equivalence – Intuition"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

Lec 19.12!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A), W(A),R(B),W(B) !

T1:R(A),W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

Page 4

Lec 19.13!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Is this schedule serializable?!

T1:R(A), W(A)
T2: R(A),W(A), !

Lec 19.14!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Dependency Graph

•  Dependency graph:
– Transactions represented as nodes
– Edge from Ti to Tj:

»  an operation of Ti conflicts with an operation of Tj
»  Ti appears earlier than Tj in the schedule

•  Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

Lec 19.15!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example

•  Conflict serializable schedule:

•  No cycle!

T1 T2
A

Dependency graph!
B

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

Lec 19.16!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example

•  Conflict that is not serializable:

•  Cycle: The output of T1 depends on T2, and vice-
versa

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1 T2
A

B

Dependency graph!

Page 5

Lec 19.17!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Notes on Conflict Serializability"
•  Conflict Serializability doesn’t allow all schedules that

you would consider correct
– This is because it is strictly syntactic - it doesn’t consider

the meanings of the operations or the data

•  In practice, Conflict Serializability is what gets used,
because it can be done efficiently

– Note: in order to allow more concurrency, some special
cases do get implemented, such as for travel
reservations, …

•  Two-phase locking (2PL) is how we implement it

Lec 19.18!11/5! Ion Stoica CS162 ©UCB Fall 2012!

T1:R(A), W(A),
T2: W(A),

T3: WA !

Srializability ≠ Conflict Serializability"
•  Following schedule is not conflict serializable!

•  However, the schedule is serializable since its output is
equivalent with the following serial schedule!

!

•  Note: deciding whether a schedule is serializable (not
conflict-serializable) is NP-complete !

!

T1 T2

A
Dependency graph!

T1:R(A),W(A),
T2: W(A),

T3: WA !

T3

A
A A

Lec 19.19!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Locks
•  “Locks” to control access to data

•  Two types of locks:
– shared (S) lock – multiple concurrent transactions

allowed to operate on data
– exclusive (X) lock – only one transaction can operate

on data at a time

S X

S √ –

X – –

Lock"
Compatibility"
Matrix"

Lec 19.20!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Two-Phase Locking (2PL)

1) Each transaction must obtain:
–  S (shared) or X (exclusive) lock on data before reading,
–  X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”

0!
1!
2!
3!
4!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19!

Lo

ck
s

H
el

d!

Time"

Growing!
Phase!

Shrinking!
Phase!

Lock Point!!

Page 6

Lec 19.21!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Two-Phase Locking (2PL)"
•  2PL guarantees conflict serializability

•  Doesn’t allow dependency cycles. Why?

•  Answer: a dependency cycle leads to deadlock
–  Assume there is a cycle between Ti and Tj
–  Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
–  Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
–  Thus, both Ti and Tj wait for each other
–  Since with 2PL neither Ti nor Tj release locks before acquiring

all locks they need à deadlock

•  Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”

Lec 19.22!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Lock Management

•  Lock Manager (LM) handles all lock and unlock requests
– LM contains an entry for each currently held lock

•  When lock request arrives see if anyone else holds a
conflicting lock

–  If not, create an entry and grant the lock
–  Else, put the requestor on the wait queue

•  Locking and unlocking are atomic operations

•  Lock upgrade: share lock can be upgraded to exclusive lock

Lec 19.23!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example"
•  T1 transfers $50 from account A to account B!

•  T2 outputs the total of accounts A and B!

•  Initially, A = $1000 and B = $2000!

•  What are the possible output values?!

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)!

T2:Read(A),Read(B),PRINT(A+B)!

Lec 19.24!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Is this a 2PL Schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Unlock(A) <granted>

6 Read(A)

7 Unlock(A)

8 Lock_S(B) <granted>

9 Lock_X(B)

10 Read(B)

11 <granted> Unlock(B)

12 PRINT(A+B)

13 Read(B)

14 B := B +50

15 Write(B)

16 Unlock(B)

No, and it is not serializable

Page 7

Lec 19.25!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Is this a 2PL Schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
Lec 19.26!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Cascading Aborts"
•  Example: T1 aborts!

– Note: this is a 2PL schedule!

•  Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1!

•  Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

– All locks held by a transaction are released only when
the transaction completes !

T1:R(A),W(A), R(B),W(B), Abort
T2: R(A),W(A) !

Lec 19.27!11/5! Ion Stoica CS162 ©UCB Fall 2012!

 Strict 2PL (cont’d)

•  All locks held by a transaction are released only when
the transaction completes

•  In effect, “shrinking phase” is delayed until:

a)  Transaction has committed (commit log record on
disk), or

b)  Decision has been made to abort the transaction
(then locks can be released after rollback).

Lec 19.28!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Is this a Strict 2PL schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

No: Cascading Abort Possible

Page 8

Lec 19.29!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Is this a Strict 2PL schedule?"
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Read(B)

7 B := B +50

8 Write(B)

9 Unlock(A)

10 Unlock(B) <granted>

11 Read(A)

12 Lock_S(B) <granted>

13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)

Lec 19.30!11/5! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ It is possible for two read operations to
conflict!

•  Q2: True _ False _ A strict 2PL schedule does not avoid
cascading aborts!

•  Q3: True _ False _ 2PL leads to deadlock if schedule not
conflict serializable !

•  Q4: True _ False _ A conflict serializable schedule is always
serializable!

•  Q5: True _ False _ The following schedule is serializable!

!
!
!

Quiz 19.1: Transactions"

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B) !

Lec 19.31!11/5! Ion Stoica CS162 ©UCB Fall 2012!

•  Q1: True _ False _ It is possible for two read operations to
conflict!

•  Q2: True _ False _ A strict 2PL schedule does not avoid
cascading aborts!

•  Q3: True _ False _ 2PL leads to deadlock if schedule not
conflict serializable !

•  Q4: True _ False _ A conflict serializable schedule is always
serializable!

•  Q5: True _ False _ The following schedule is serializable!

!
!
!

Quiz 19.1: Transactions"

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B) !

X!

X!

X!

X!

X!

Lec 19.32!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Announcements"
•  Project 3 is due on Tuesday, November 13, 11:59pm!

•  Next lecture: Anthony Joseph!

•  Please remember that we have another
“unannounced” quiz!!
!

Page 9

Lec 19.33!11/5! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Lec 19.34!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Deadlock"
•  Recall: if a schedule is not conflict-serializable, 2PL

leads to deadlock, i.e.,!
– Cycles of transactions waiting for each other to release

locks!

•  Recall: two ways to deal with deadlocks!
– Deadlock prevention!
– Deadlock detection!

•  Many systems punt problem by using timeouts instead!
– Associate a timeout with each lock!
–  If timeout expires release the lock!
– What is the problem with this solution?!

Lec 19.35!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Deadlock Prevention

•  Prevent circular waiting

•  Assign priorities based on timestamps. Assume Ti

wants a lock that Tj holds. Two policies are possible:
–  Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti

aborts
–  Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

•  If a transaction re-starts, make sure it gets its original
timestamp

– Why?

Lec 19.36!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Deadlock Detection

•  Allow deadlocks to happen but check for them and fix
them if found

•  Create a wait-for graph:
–  Nodes are transactions
–  There is an edge from Ti to Tj if Ti is waiting for Tj to

release a lock

•  Periodically check for cycles in the waits-for graph

•  If cycle detected – find a transaction whose removal
will break the cycle and kill it

Page 10

Lec 19.37!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Deadlock Detection (Continued)
•  Example:	

•  T1: S(A),S(D), S(B)

•  T2: X(B), X(C)
•  T3: S(D),S(C), X(A)

•  T4: X(B)

	
	

T1	 T2	

T4	 T3	
Lec 19.38!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Durability and Atomicity"
•  How do you make sure transaction results persist in

the face of failures (e.g., disk failures)? !

•  Replicate database!
– Commit transaction to each replica!

•  What happens if you have failures during a transaction
commit?!

– Need to ensure atomicity: either transaction is committed
on all replicas or none at all!

Lec 19.39!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Two Phase (2PC) Commit"
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then

all nodes COMMIT!
– Otherwise ABORT at all nodes!

!
•  Developed by Turing award winner Jim Gray (first

Berkeley CS PhD, 1969)!

"

Lec 19.40!11/5! Ion Stoica CS162 ©UCB Fall 2012!

2PC Algorithm"

•  One coordinator !
•  N workers (replicas)!

•  High level algorithm description!
– Coordinator asks all workers if they can commit!
–  If all workers reply ”VOTE-COMMIT”, then coordinator

broadcasts ”GLOBAL-COMMIT”, !
!Otherwise coordinator broadcasts ”GLOBAL-ABORT”!

– Workers obey the GLOBAL messages!

Page 11

Lec 19.41!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Detailed Algorithm"

Coordinator	 sends	 VOTE-‐REQ	 to	 all	
workers	

–  Wait	 for	 VOTE-‐REQ	 from	 coordinator	
–  If	 ready,	 send	 VOTE-‐COMMIT	 to	

coordinator	
–  If	 not	 ready,	 send	 VOTE-‐ABORT	 to	

coordinator	
–  And	 immediately	 abort	

–  If	 receive	 VOTE-‐COMMIT	 from	 all	 N	
workers,	 send	 GLOBAL-‐COMMIT	 to	
all	 workers	

–  If	 doesn’t	 receive	 VOTE-‐COMMIT	
from	 all	 N	 workers,	 send	 GLOBAL-‐
ABORT	 to	 all	 workers	

–  If	 receive	 GLOBAL-‐COMMIT	 then	
commit	

–  If	 receive	 GLOBAL-‐ABORT	 then	 abort	

Coordinator Algorithm" Worker Algorithm"

Lec 19.42!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Failure Free Example Execution"

coordinator	

worker	 1	

:me	

VOTE-‐
REQ	

VOTE-‐
COMMIT	

GLOBAL-‐
COMMIT	

worker	 2	

worker	 3	

Lec 19.43!11/5! Ion Stoica CS162 ©UCB Fall 2012!

State Machine of Coordinator"

•  Coordinator implements simple state machine!

INIT	

WAIT	

ABORT	 COMMIT	

Recv:	 START	
Send:	 VOTE-‐REQ	

Recv:	 VOTE-‐ABORT	
Send:	 GLOBAL-‐ABORT	

Recv:	 VOTE-‐COMMIT	
Send:	 GLOBAL-‐COMMIT	

Lec 19.44!11/5! Ion Stoica CS162 ©UCB Fall 2012!

State Machine of Workers"

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

Page 12

Lec 19.45!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Dealing with Worker Failures"

•  How to deal with worker failures?!
– Failure only affects states in which the node is waiting for

messages!
– Coordinator only waits for votes in ”WAIT” state!
–  In WAIT, if doesn’t receive !
!N votes, it times out and sends!
!GLOBAL-ABORT!

INIT	

WAIT	

ABORT	 COMMIT	

Recv:	 START	
Send:	 VOTE-‐REQ	

Recv:	 VOTE-‐ABORT	
Send:	 GLOBAL-‐ABORT	

Recv:	 VOTE-‐COMMIT	
Send:	 GLOBAL-‐COMMIT	

Lec 19.46!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example of Worker Failure"

coordinator	

worker	 1	

:me	

VOTE-‐REQ	

VOTE-‐
COMMIT	

GLOBAL-‐
ABORT	

INIT	

WAIT	

ABORT	 COMM	 :meout	

worker	 2	

worker	 3	

Lec 19.47!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Dealing with Coordinator Failure"

•  How to deal with coordinator failures?!
– worker waits for VOTE-REQ in INIT!

» Worker can time out and abort (coordinator handles it)!
– worker waits for GLOBAL-* message in READY!

»  If coordinator fails, workers must!
"BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

Lec 19.48!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example of Coordinator Failure #1"

coordinator	

worker	 1	

VOTE-‐
REQ	

VOTE-‐
ABORT	

:meout	

INIT	

READY	

ABORT	 COMM	

:meout	

:meout	

worker	 2	

worker	 3	

Page 13

Lec 19.49!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Example of Coordinator Failure #2"

VOTE-‐REQ	

VOTE-‐
COMMIT	

INIT	

READY	

ABORT	 COMM	

block	 wai:ng	 for	
coordinator	

restarted	

GLOBAL-‐
ABORT	

coordinator	

worker	 1	

worker	 2	

worker	 3	

Lec 19.50!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Remembering Where We Were"

•  All nodes use stable storage to store which state they
were in!

•  Upon recovery, it can restore state and resume:!
– Coordinator aborts in INIT, WAIT, or ABORT!
– Coordinator commits in COMMIT!
– Worker aborts in INIT, READY, ABORT!
– Worker commits in COMMIT!

Lec 19.51!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Blocking for Coordinator to Recover"
•  A worker waiting for global decision

can ask fellow workers about their
state!

–  If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*!

– Thus, worker can safely abort or
commit, respectively!

–  If another worker is still in INIT state!
!then both workers can decide to abort !

–  If all workers are in ready, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)!

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

Lec 19.52!11/5! Ion Stoica CS162 ©UCB Fall 2012!

Summary"
•  Correctness criterion for transactions is “serializability”.

–  In practice, we use “conflict serializability”, which is somewhat
more restrictive but easy to enforce

•  Two phase locking (2PL) and strict 2PL!
–  Ensure conflict-seriazability for R/W operations!
–  If scheduler not conflict-serializable deadlocks!
– Deadlocks can be either detected or prevented!

•  Two-phase commit (2PC):!
–  Ensure atomicity and durability: a transaction is commited/

aborted either by all replicas or by none of them!

