Recap: Security Requirements in Distributed Systems
+ Authentication
CS162 — Ensures that a user is who is claimin
. g to be
Operating Systems and
ms Programmin . .
SySte Ls t (:g 2aZ 9 + Data integrity
ecture — Ensure that data is not changed from source to destination or after
being written on a storage device
Security (ll)
+ Confidentiality
November 19, 2012 — Ensures that data is read only by authorized users
lon Stoica
http://inst.eecs.berkeley.edu/~cs162 * Non-repudiation
— Sender/client can't later claim didn’t send/write data
— Receiver/server can’t claim didn’t receive/write data
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 222
Recap: Digital Certificates Authentication: Passwords s
* How do you know = is Alice’s public key? + Shared secret between two parties
+ Main idea: trusted authority signing binding between Alice and
its private key + Since only user knows password, someone types correct
(Alice (0 _ _"/ N Certificate password = must be user typing it
_ = T 2 fication feriSign - Authority
- = =\ identity ver! .
@ - [offline) ! l' * Very common technique
Digital certificate
Alice (== EQ ==, Alice}, K erisign private) ! + System must keep copy of secret to
oy check against passwords
" — What if malicious user gains access to list of passwords?
» Need to obscure information somehow
{ — Mechanism: utilize a transformation that is difficult to reverse
D(E({ ?\‘ = Alice}r Kverisign_private)v K\/erisign_public) = {Alice, 4\',; :} without the I'Ight key (eg encryption)
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.3 11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.4

Page 1

Passwords: Secrecy
+ Example: UNIX /etc/passwd file
— passwd—one way hash

— System stores only encrypted version, so OK even if
someone reads the file!

— When you type in your password, system compares
encrypted version

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 225

Passwords: How easy to guess? (cont’d)

+ Paradox:
— Short passwords are easy to crack
— Long ones, people write down!

+ Technology means we have to use longer passwords
— UNIX initially required lowercase, 5-letter passwords: total of
26°=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .01ps to check a password—0.1 seconds to crack
— Takes less time to check for all words in the dictionary!

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 227

Page 2

Passwords: How easy to guess?

* Three common ways of compromising passwords
+ Password Guessing:
— Often obvious passwords like birthday, favorite color, girlfriend’s
name, etc...
— Trivia question 1: what is the most popular password?
— Trivia question 2: what is the next most popular password?
— Answer: (from 32 million stolen passwords— Rockyou 2010)
http://www.nytimes.com/2010/01/21/technology/21password.html

- Dictionary Attack (against stolen encrypted list):
— Work way through dictionary and compare encrypted version of
dictionary words with entries in /etc/passwd
— hitp://www.skullsecurity.org/wiki/index.php/Passwords

* Dumpster Diving:
— Find pieces of paper with passwords written on them

— (Also used to get social-security numbers, etc.)
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.6

Passwords: Making harder to crack

+ Can’t make it impossible to crack, but can make it harder

» Technique 1: Extend everyone’s password with a unique
number (“Salt” — stored in password file)
— Early UNIX uses 12-bit “salt” =»dictionary attacks 4096x harder

— Without salt, could pre-compute all the words in the dictionary
hashed with UNIX algorithm (modern salts are 48-128 bits)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.8

Passwords: Making harder to crack (cont’d)

+ Technique 2: Require more complex passwords
— Make people use at least 8-character passwords with upper-
case, lower-case, and numbers
» 708=6x10"4=6million seconds=69 days@0.01us/check
— Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

+ Technique 3: Delay checking of passwords
— If attacker doesn’t have access to /etc/passwd, delay every
remote login attempt by 1 second
— Makes it infeasible for rapid-fire dictionary attack

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 229

Passwords: Making harder to crack (cont’d)

+ Technique 5: “Zero-Knowledge Proof”
— Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents number; user computes something from number;
returns answer to server; server never asks same “question” twice

+ Technique 6: Replace password with Biometrics

— Use of one or more intrinsic physical or
behavioral traits to identify someone

— Examples: fingerprint reader, palm reader, retinal scan

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.11

Page 3

Passwords: Making harder to crack (cont’d)

* Technique 4: Assign very long passwords/passphrases
— Can have more entropy (randomness—harder to crack)
— Embed password in a smart card (or ATM card)
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
— Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances random number

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2210

Rest of This Lecture

+ Host Compromise
— Attacker gains control of a host

+ Denial-of-Service
— Attacker prevents legitimate users from gaining service

» Attack can be both

— E.g., host compromise that provides resources for
denial-of-service

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2212

Host Compromise

+ One of earliest major Internet security incidents

— Internet Worm (1988): compromised almost every BSD-
derived machine on Internet

+ Today: estimated that a single worm could compromise
10M hosts in < 5 min using a zero-day exploit

+ Attacker gains control of a host
— Reads data
— Compromises another host
— Launches denial-of-service attack on another host
— Erases data

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2213

Trojan Example

+ Nov/Dec e-mail message sent containing holiday message and
a link or attachment

« Goal: trick user into opening link/attachment (social engineering)

From: Halmark Greetings [mailto:greet@halmark-greetings.com]
Date: Thursday, November 18, 2010 9:48 PM

To: Recipients

Subject: You have received a greeting!

You have received a virtual greeting card from Mary!
You can view your greeting card visiting the following link:

http:/fwww halmark -greetings. com/greetings/TK DFTUER GHIUER.

If you can't click on the above link, you can also visit Halmark Greetings directly at
http /fwww halmark-greetings. com/ and enter your greeting card code, which is
IKDFIUERGHIUER.

Halmark Greetings, the greeting that always puts a smile on your face.

+ Adds keystroke logger or turns into zombie

+ How? Typically by using a buffer overflow exploit

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2215

Page 4

Definitions

« Worm

— Replicates itself usually using buffer overflow attack

* Virus

— Program that attaches itself to another (usually trusted)

program or document
+ Trojan horse

— Program that allows a hacker a back door to compromised

machine
+ Botnet (Zombies)

— A collection of programs running autonomously and

controlled remotely

— Can be used to spread out worms, mounting DDoS attacks

11/19/2012

lon Stoica CS162 ©UCB Fall 2012

2214

Buffer Overflow

* Part of the request
sent by the attacker too
large to fit into buffer
program uses to hold it

* Spills over into
memory beyond the
buffer

* Allows remote attacker
to inject executable
code

11/19/2012

lon Stoica CS162 ©UCB Fall 2012

void get_cookie(char *packet) {
. (200 bytes of local vars) . . .
munch (packet) ;

}

void munch (char *packet) {
int n;
char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

22.16

Example: Normal Execution

void get_cookie(char *packet) {

Stack

. (200 bytes of local vars) .
munch (packet) ;

X+200 —

}

void munch (char *packet) {
int n;
char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

2217

Example: Normal Execution

void get_cookie(char *packet) {

Stack

. (200 bytes of local vars) .
munch (packet) ;

X+200 —

} X —]

get _cookie() s
stack frame

void munch (char *packet)
int n;
char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet([n]);

X - 4 —,] to get_cookie()

return address back

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

22.19

Page 5

Example: Normal Execution

void get_cookie (char *packet)
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;
char cookie[512];

code here computes offset of cookie in

packet, stores it in n

strcpy (cookie, &packet[n]);

11/19/2012

{
Stack

X+200 —

get_cookie() s
stack frame

lon Stoica CS162 ©UCB Fall 2012 22.18

Example: Normal Execution

void get_cookie (char *packet)
. (200 bytes of local vars) .
munch (packet) ;

}

void munch (char *packet)

{

Stack
X+200 —
get_cookie() s
stack frame
X —

return address back

int n; X - 4 —,] to get_cookie()
char cookie[512];
n
e . X -8
code here computes offset of cookie in
packet, stores it in n caals
strcpy (cookie, &packet([n]);
X -520
}
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.20

Example: Normal Execution

void get_cookie(char *packet) {

}

void munch (char *packet)

Stack

. (200 bytes of local vars) .
munch (packet) ;

X+200 —

X —

get _cookie() s
stack frame

return address back

int n; X - 4 —,] to get_cookie()
char cookie[512];
n

P X -8
code here computes offset of cookie in
packet, stores it in n el
strcpy (cookie, &packet[n]);

X - 520 —

} \ return address back
X - 524 | to munch()
strepy() s stack ...
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.21

Example: Normal Execution

void get_cookie (char *packet) { St k
g ac
. (200 bytes of local vars) . X + 200 —
munch (packet) ;
get_cookie() s
stack frame
) X —

. *
void munch (char *packet) return address back
int n; X - 4 —,] to get_cookie()
char cookie[512];
n
X-8—

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet([n]); cookie value read

X - 520 —| from packet

} \ return address back

X - 524 | to munch()

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2222

Example: Normal Execution

void get_cookie(char *packet) {

}

void munch (char *packet)

. (200 bytes of local vars) .

Stack

X+200 —
munch (packet) ;

X —

get _cookie() s
stack frame

return address back
to get_cookie()

n

int n; X - 4]
char cookie[512];
e . X -8
code here computes offset of cookie in
packet, stores it in n
strcpy (cookie, &packet([n]);

X -520

cookie value read
from packet

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

22.23

Example: Normal Execution

void get cookie (char *packet) { St k
acl
. (200 bytes of local vars) . X +200 —
munch (packet) ;
get _cookie() s
stack frame
} X —]

void munch(char *packet) return address back
int n; X - 4 —,] to get_cookie()
char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet([n]);

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.24

Example: Normal Execution

void get_cookie(char *packet) {
. (200 bytes of local vars) .
munch (packet) ;

Stack

X+200 —

get _cookie() s
stack frame

} X —
void munch (char *packet) {

int n;
char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.25

Example: Buffer Overflow

void get_cookie(char *packet) {
. (200 bytes of local vars) .

munch (packet) ;

Stack

cookie

e stack fgame

} X —]

void munch (char *packet) et ks bk
int. ny x-1— FOD

n

X+200 —

char cookie[512];

.. X -8— | ZaYaa)
.o rorrr
code here computes offset of cookie in
packet, stores it in n a c ket
strcpy (cookie, &packet[n]); p
A X - 520 —
} return address back

X - 524 | to munch()

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.27

Page 7

Example: Buffer Overflow

void get_cookie (char *packet) {
. (200 bytes of local vars) .

Stack

X +200 —
munch (packet) ;

get_cookie() s
stack frame

) X —
void munch (char *packet)

return address back

int n; X - 4 —,] to get_cookie()
char cookie[512]; n
. X - 8—>
code here computes offset of cookie in
packet, stores it in n el
strcpy (cookie, &packet[n]);
R X -520 —
} \ return address back
X - 524 | to munch()
strepy() s stack ...
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.26
Example: Buffer Overflow
void get cookie (char *packet) { St k
acl
. (200 bytes of local vars) . X +200 —
munch (packet) ; Exeﬂutable
) (| code
void munch (char *packet) { retum! adckess back
int n; X - 4] to get_codke()

char cookie[512];

<Doesn’ t Matter>

<Doesn’ t Matter>

. X - 8—>
code here computes offset of cookie in
packet, stores it in n
strcpy (cookie, &packet([n]);
X - 520 —
}
X-524

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

return address back
to munch()

22.28

Example: Buffer Overflow

void get_cookie(char *packet) {

: Stack
. . (200 bytes of local vars) . . . X +200 —
munch (packet) ; Exeﬁutable
) A%ch
X(—
void munch (char *packet) { return adckess back

int n; X - 4] to get_codkie()

char cookie[512]; <Doesn’ t Matter>

.. X -8
code here computes offset of cookie in
packet, stores it in n il Ve
strcpy (cookie, &packet[n]);
X-520
}
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.29

Automated Compromise: Worms

* When attacker compromises a host, they can instruct it
to do whatever they want

® |Instructing it to find more vulnerable hosts to repeat the
process creates a worm: a program that self-replicates
across a network

® Often spread by picking 32-bit Internet addresses at
random to probe ...

® .. but this isn’t fundamental

® As the worm repeatedly replicates, it grows exponentially
fast because each copy of the worm works in parallel to
find more victims

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.31

Page 8

Example: Buffer Overflow

Stack

X+200 —
Executable

Now branches to code read in from XG’ ‘Code"

the network return adogess back

X - 4] to get_codkte()

From here on, machine falls
underthe attacker’s control

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.30

Worm Spreading

f=(eXeD 1) /(1+ e ke)

 f—fraction of hosts infected

¢ K —rate at which one host
can compromise others

o T — start time of the attack —
I —
1 =

t
11/19/2012 lon Stoica CS162 ©UCB Fall 2012

Worm Examples

+ Morris worm (1988)

+ Code Red (2001)
—369K hosts in 10 hours

+ MS Slammer (January 2003)

Theoretical worms
« Zero-day exploit, efficient infection and propagation
* 1M hosts in 1.3 sec
* $50B+ damage

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.33

Code Red Worm (2001)

+ Attempts to connect to TCP port 80 (i.e., HTTP port) on a
randomly chosen host

+ If successful, the attacking host sends a crafted HTTP GET
request to the victim, attempting to exploit a buffer overflow

+ Worm “bug”: all copies of the worm use the same random
generator and seed to scan new hosts

— DoS attack on those hosts
— Slow to infect new hosts

- 27 generation of Code Red fixed the bug!

— It spread much faster
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.35

Page 9

Morris Worm (1988)

+ Infect multiple types of machines (Sun 3 and VAX)
— Was supposed to be benign: estimate size of Internet

+ Used multiple security holes including
— Buffer overflow in fingerd
— Debugging routines in sendmail
— Password cracking

+ Intend to be benign but it had a bug
— Fixed chance the worm wouldn’t quit when reinfecting a
machine - number of worm on a host built up
rendering the machine unusable

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.34

MS SQL Slammer (January 2003)

+ Uses UDP port 1434 to exploit a buffer overflow in MS
SQL server

— 376-bytes plus UDP and IP headers: one packet

+ Effect
— Generate massive amounts of network packets

— Brought down as many as 5 of the 13 internet root name
servers

» Others

— The worm only spreads as an in-memory process: it
never writes itself to the hard drive

» Solution: close UDP port on firewall and reboot

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.36

MS SQL Slammer (January 2003)

Packet Loss %

5) Global Paths (1393) Global Web (734)
9 Global ISPI000 (634) Global Internet (2372)
20 {3) DNSservers (302)
-
, Initial attack Europe us
2 (Monday)
1
E
p:
[
10%
° {i}gug’,."‘“” P MR PVNIPEARI ST ORI 2, A SRl oy
Timezone () () Copyright 2003 Matrix NetSystems, Inc. wiww matrixnetsysterns com
GMT Tan 1/22 1/23 1/24 1/25 1/26 1/27
EST Jan20 Jan21 lan22 Jan23 Jan24 Jan 25 Jan 26
(From http://www.f-secure.com/v-descs/mssqlm.shtml)
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.37

11/19/2012

Potential Solutions

Don't write buggy software
— Program defensively — validate all user-provided inputs
— Use code checkers (slow, incomplete coverage)

Use Type-safe Languages (Java, Perl, Python, ...)
— Eliminate unrestricted memory access of C/C++

Use HW support for no-execute regions (stack, heap)

Leverage OS architecture features
— Compartmentalize programs
» E.g., DNS server doesn’t need total system access

Add network firewalls

lon Stoica CS162 ©UCB Fall 2012 22.39

Page 10

Hall of Shame

+ Software that have had many stack overflow bugs:
— BIND (most popular DNS server)

— RPC (Remote Procedure Call, used for NFS)
» NFS (Network File System), widely used at UCB

— Sendmail (most popular UNIX mail delivery software)
— IS (Windows web server)

— SNMP (Simple Network Management Protocol, used to
manage routers and other network devices)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.38

Announcements

» Project 4: deadlines pushed by one day

— Initial design due on Tuesday, Nov 27

— Code due on Thursday, Dec 6

— Final design and evaluations due on Friday, Dec 7
» Review for final exam: Wednesday, Dec 5, 6-9pm

» Next Monday I'll be out:

— Lecture will be given by Ali Ghodsi (Researcher at
Berkeley and Professor at KTH, Sweden)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.40

5min Break

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.41

Firewall (cont’d)

+ Restrict traffic between Internet and devices (machines)
behind it based on

— Source address and port number
— Payload
— Stateful analysis of data

+ Examples of rules
— Block any external packets not for port 80 (i.e., HTTP port)
— Block any email with an attachment
— Block any external packets with an internal IP address
» Ingress filtering

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 2243

Page 11

Firewall

+ Security device whose goal is to /
prevent computers from outside to
gain control to inside machines /

+ Hardware or software

Attacker

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 \ 22.42

Firewalls: Properties

+ Easier to deploy firewall than secure all internal hosts

+ Doesn’t prevent user exploitation/social networking
attacks

+ Tradeoff between availability of services (firewall passes
more ports on more machines) and security

— If firewall is too restrictive, users will find way around it, thus
compromising security

— E.g., tunnel all services using port 80

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.44

Denial of Service

* Huge problem in current Internet

— Major sites attacked: Yahoo!, Amazon, eBay, CNN,
Microsoft

— 12,000 attacks on 2,000 organizations in 3 weeks
— Some more that 600,000 packets/second
— Almost all attacks launched from compromised hosts

« General Form

— Prevent legitimate users from gaining service by
overloading or crashing a server

— E.g., SYN attack

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

22.45

SYN Attack
(Recap: 3-Way Handshaking)

+ Goal: agree on a set of parameters: the start
sequence number for each side
— Starting sequence numbers are random.

Client (initiator) Server

SYN, SeqNum = X

Kk=X+ 1
syYN and ACK, seqNum =Y and Ac
AC
K, Ack = Vot

lon Stoica CS162 ©UCB Fall 2012

11/19/2012

22.47

Page 12

Affect on Victim

+ Buggy implementations allow unfinished connections
to eat all memory, leading to crash

+ Better implementations limit the number of unfinished
connections

— Once limit reached, new SYNs are dropped

« Affect on victim’s users

— Users can'’t access the targeted service on the victim
because the unfinished connection queue is full > DoS

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.46

SYN Attack

+ Attacker: send at max rate TCP SYN with random
spoofed source address to victim

— Spoofing: use a different source IP address than own
— Random spoofing allows one host to pretend to be many

+ Victim receives many SYN packets
— Send SYN+ACK back to spoofed IP addresses
— Holds some memory until 3-way handshake completes

» Usually never, so victim times out after long period (e.g., 3
minutes)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.48

Solution: SYN Cookies

+ Server: send SYN-ACK with sequence number y, where
—vy = H(client_IP_addr, client_port)
—H(): one-way hash function

+ Client: send ACK containing y+1

+ Sever:
— verify if y = H(client_IP_addr, client_port)
— If verification passes, allocate memory

* Note: server doesn’t allocate any memory if the client’s
address is spoofed

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.49

Other Denial-of-Service Attacks

+ Reflection
— Cause one non-compromised host to attack another

—E.g., host A sends DNS request or TCP SYN with source
V to server R. R sends reply to V

Attacker (A) Reflector (R)

/
Internet VR
Victim (V) [
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.51

Page 13

Other Denial-of-Service Attacks

+ Reflection
— Cause one non-compromised host to attack another

—E.g., host A sends DNS request or TCP SYN with source
V to server R. R sends reply to V

Attacker (A) Reflector(R)
L_lvlal L
Internet
1119/2012 lon Stoica CS162 ©UCB Fall 2012 2250

Identifying and Stop Attacking Machines

+ Develop techniques for defeating spoofed source
addresses

+ Egress filtering

— A domain’s border router drop outgoing packets which
do not have a valid source address for that domain

— If universal, could abolish spoofing

+ IP Traceback
— Routers probabilistically tag packets with an identifier

— Destination can infer path to true source after receiving
enough packets

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.52

Distributed Denial-of-Service Attacks

Zombie botnet used to generate
massive traffic flows/packet rates

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.58
Additional Notes on Public Key
Cryptography
(Not required for Final Exam)
11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.55

Page 14

Summary

+ Security is one of the biggest problem today

» Host Compromise
— Poorly written software

— Partial solutions: better OS security architecture, type-
safe languages, firewalls

+ Denial-of-Service
— No easy solution: DoS can happen at many levels
— DDoS attacks can be very difficult to defeat

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.54

Generating Public and Private Keys

+ Choose two large prime numbers p and ¢ (~ 256 bit
long) and multiply them: n = p*g

+ Chose encryption key e such that e and (p-1)*(g-1)
are relatively prime

+ Compute decryption key d as
d = e mod ((p-1)*(g-1))
(equivalent to d*e = 1 mod ((p-1)*(q-1)))

+ Public key consist of pair (n, €)
* Private key consists of pair (d, n)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.56

RSA Encryption and Decryption

+ Encryption of message block m:
—c=mfmod n

+ Decryption of ciphertext c:

—m=c?modn

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

22.57

Example (2/2)

*nN=77;e=13;d=37
+ Send message block m =7
+ Encryption: c =me mod n =7"¥ mod 77 = 35

+ Decryption: m = c4 mod n = 35% mod 77 =7

11/19/2012 lon Stoica CS162 ©UCB Fall 2012

22.59

Page 15

Example (1/2)

* Choosep=7andq=11>n=p“q=77

+ Compute encryption key e: (p-1)*(q-1) =610 =60 >

chose e = 13 (13 and 60 are relatively prime numbers)

» Compute decryption key d such that 13*d = 1 mod 60 >

d =37 (37*13 = 481)

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 22.58

Properties

Confidentiality
A receiver A computes n, ¢, d, and sends out (n, ¢)

— Everyone who wants to send a message to 4 uses (n, e) to
encrypt it

How difficult is to recover d ? (Someone that can do
this can decrypt any message sent to A4!)

Recall that
d = e’ mod ((p-1)*(g-1))

So to find d, you need to find primes factors p and ¢
— This is provable hard

11/19/2012 lon Stoica CS162 ©UCB Fall 2012 60 22.60

