11/27/12

Cloud Computing

Ali Ghodsi
UC Berkeley, AMPLab
alig@cs.berkeley.edu

Background of Cloud Computing

* 1990: Heyday or parallel computing,
multi-processors
— Cannot make computers faster, they’ll

overheat, cannot make transistors smaller, etc.

— Multiprocessors the only way to go

* But computers continued doubling in
speed

— Smaller transistors, better cooling, ...

Multi-core Revolution

* 15-20 years later than predicted,
we have hit the performance wall

Pt

At the same time...

* Amount of stored data is exploding...

SCIENCE IN THE
PETABYTE ERA

11/27/12

Data Deluge

* Billions of users connected through the net
- WWW, EB, twitter, cell phones, ...
—80% of the data on FB was produced last year

* Storage getting cheaper~
— Store evermore data

Solving the Impedance Mismatch

» Computers not getting
faster,
drowning in data
— How to resolve the dilemma?

* Solution adopted by web- ==,
scale companies ;

— Go massively distributed
and parallel

Enter the World of Distributed
Systems

* Distributed Systems/Computing

— Loosely coupled set of computers, communicating
through message passing, solving a common goal

* Distributed computing is challenging
— Dealing with partial failures (examples?)
— Dealing with asynchrony (examples?)

* Disitributed Computing vs Paralle] Computing?

— distributed computing=parallel computing+partial
failures

Dealing with Distribution

* Some tools to help distributed
programming
— Message Passing Interface (MPI)
— Distributed Shared Memory (DSM)
— Remote Procedure Calls (RPC)
—RMI, WS, SOA

* Distributed programming still very hard

11/27/12

Nascent Cloud Computing

* Inktomi, founded by Eric Brewer/UCB
— Pioneered most of the concepts of cloud computing

— First step toward an operating system for the
datacenter

Cluster-Based Scalable Network Services

The Datacenter is the new
Computer

The Datacenter

as a Computer

An Introduction to the Design
of Warehouse-Scale Machines

Luiz Andre Barroso
Urs Hilzle

SYNTHESIS LECTURES 0!
CoMPUTER 4

N
ARCHITECTURE
Mk D, S

Datacenter OS

* If the datacenter is the new computer
—what is it’s operating system?
— NB: not talking of a host OS

Classical Operating Systems

* Data sharing
—1IPC, files, pipes, ...

* Programming Abstractions
— Libraries (libc), system calls, ...

* Multiplexing of resources
— Time sharing, virtual memory, ...

11/27/12

Datacenter Operating System Google Cloud Infrastructure
+ Data sharing * Google File System (GFS), 2003 e
— Distributed File System for entire -

— Google File System, key/value stores cluster

— Single namespace

* Programming Abstractions

— Google MapReduce, PIG, Hive, Spark * Google MapReduce (MR), 2004

— Runs queries/jobs on data
— Manages work distribution & fault-
* Multiplexing of resources tolerance

— Colocated with file system
— Mesos, YARN, ZooKeeper, BookKeeper... w 4

* Open source versions Hadoop DFS and Hadoop MR

GFS/HDFS Architecture

* Files split into blocks Namenode

Google File System (GFS)
Hadoop Distributed File System " Blocks replicated across
(HDES)

Datanodes
* Namenode stores metadata

(file names, locations, etc) nl% hl% h% ﬁl%

L) W @ @

11/27/12

GFS/HDFEFS Insights

¢ Petabyte storage
— Large block sizes (128 MB)

— Less metadata about blocks enables centralized
architecture

— Big blocks allow high throughput sequential reads/
writes

* Data striped on hundreds/thousands of servers
— Scan 100 TB on 1 node @ 50 MB/s = 24 days
— Scan on 1000-node cluster = 35 minutes

GFS/HDEFS Insights (2)

* Failures will be the norm
— Mean time between failures for 1 node = 3 years
— Mean time between failures for 1000 nodes = 1
day

» Use commodity hardware

— Failures are the norm anyway, buy cheaper
hardware

* No complicated consistency models
— Single writer, append-only data

MapReduce

MapReduce Model

Data type: key-value records

Map function:
(K Vin) > liSt(Kinter' v

in/ inter)

inter

Group all identical K, values and pass to reducer

Reduce function:
(K list(V.

inter/

)) 9 liSt(Kout/ Vout)

inter.

11/27/12

Example: Word Count

Input: key is filename, value is a line in input file
def mapper(file, line):
foreach word in line.split():
output(word, 1)

Intermediate: key is a word, value is 1

def reducer(key, values):
output(key, sum(values))

Word Count Execution

Input Map Shuffle & Sort ~ Reduce Output
_ k: brown, v:[1,1]
the, 1 k: fox, v:[1,1]
q brown, 1 k: how, v: [1]
the quick k: now, v: [1] brown, 2
brown k: the v:[1,1,1] fox, 2
fox how, 1
- now, 1
the, 3
the fox
ate the k: ate v: [1]
mouse k: cow, v:[1]
_ he k: mt:fuse/ v:[1] ate, 1
k: quick, v: [1] cow, 1
how now mouse, 1
brown quick, 1
cow

What is MapReduce Used For?

+ At Google:
— Index building for Google Search
— Article clustering for Google News
— Statistical machine translation

» At Yahoo!:
— Index building for Yahoo! Search
— Spam detection for Yahoo! Mail

» AtFacebook:
— Data mining
— Ad optimization
— Spam detection

MapReduce Model Insights

* Restricted model

— Same fine-grained operation (m & r) repeated
on big data

— Operations must be deterministic

— Operations must have no side effects

— Only communication is through the shuffle
— Operation (m & r) output saved (on disk)

11/27/12

MapReduce pros

* Distribution is completely transparent
— Not a single line of distributed programming

* Automatic fault-tolerance
— Determinism enables running failed tasks
somewhere else again
— Saved intermediate data enables just re-
running failed reducers

MapReduce pros

+ Automatic scaling

— As operations as side-effect free, they can be
distributed to any number of machines
dynamically

* Automatic load-balancing

— Move tasks and speculatively execute
duplicate copies of slow tasks (stragglers)

MapReduce cons

* Restricted programming model
— Not always natural to express problems in
— Low-level coding necessary
— Little support for iterative jobs
— High-latency (batch processing)

* Addressed by follow-up research
— Pig and Hive for high-level coding
— Spark for iterative and low-latency jobs

PIG & Hive

11/27/12

Pig An Example Problem

* High-level language: Suppose you have e | o0 |

— Expresses sequences of MapReduce jobs user data in one file,
— Provides relational (SQL) operators website data in
(JOIN, GROUP BY, etc) another, and you %
— Easy to plug in Java functions need to find the top ﬁ
cantats
o

5 most visited pages

b d 18-25.
* Started at Yahoo! Research y users age

— Runs about 50% of Yahoo!’s jobs

Example from i

In MapReduce In Pig Latin

Users = load ‘users’ as (name, age);
Filtered = filter Users by
age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘topSsites’;

Example from i

Example from g 09.ppt

11/27/12

Translation to MapReduce

Notice how naturally the components of the job translate into Pig Latin.

*‘ Users = load ..

Filtered = filter ..

Pages = load ..

Joined = join ..
Grouped = group ..
Summed .. count()..
Sorted = order ..
Top5 = limit ..

i

\

Countaids

\

Example from hitp:/iwiki

Translation to MapReduce
Notice how naturally the components of the job translate into Pig Latin.
LoadUsers —___ Load Pages |
‘ ﬁ-’ Users = load ..

\Filtered = filter ..

\ﬁ Pages = load ..

; —3Joined = join ..

—Grouped = group ..

Job 2 Grouponur /Summed = .. count()..
—] =

Sorted = order ..
/Tops = limit ..
Job 3 i P

Job 1

Example from i

Hive

* Relational database built on Hadoop
— Maintains table schemas
— SQL-like query language (which can also
call Hadoop Streaming scripts)

— Supports table partitioning,
complex data types, sampling,
some query optimization

* Developed at Facebook
— Used for most Facebook jobs

Spark

11/27/12

Spark Motivation

Complex jobs, interactive queries and online
processing all need one thing that MR lacks:

Efficient primitives for data sharing

- - P
wn) w0

i

Interactive mining

Iterative job Stream processing

Spark Motivation

Complex jobs, interactive queries and online
processing all need one thing that MR lacks:

Efficient primitives for data sharing

P

Problem: in MR, only way to share data across
jobs is stable storage (e.g. file system) -> slow!

Iterative job Interactive mining Stream processing

Examples
HDES HDFS HDFS HDES
read write read write
g e
Input
result 1
result 2

result 3

Goal: In-Memory Data Sharing
Input ! é‘
" query 1 g

one-time
processing

Input Distributed
memory

[10-100x faster than network and disk J

10

11/27/12

Solution: Resilient Distributed Datasets
(RDDs)

* Partitioned collections of records that can
be stored in memory across the cluster

* Manipulated through a diverse set of
transformations (map, filter, join, etc)

* Fault recovery without costly replication

— Remember the series of transformations that
built an RDD (its lineage) to recompute lost data

« www.spark-project.org

Mesos

Background

*Rapid innovation in cluster computing
frameworks

CrliEpEmm Goosle * Fa
INEpPLEEBER Pregel ‘A
pig ML

211 9 o
paes- S CEL
1 &3 53 D1 B B g S distributed stream
oW W W computing platform
e 4 F Google 2 x =
Dryad Percolator @M%

Problem

*Rapid innovation in cluster computing
frameworks

*No single framework optimal for all
applications

*Want to run multiple frameworks in a single
cluster

» ...to maximize utilization

» ...to share data between frameworks

11

11/27/12

Where We Want to Go

Today: static partitioning Mesos: dynamic sharing

> 33%

—— 17%

m o O ﬁﬂﬂﬂ
e B:E e

0%

e

Shared cluster

33%
17/

L1
W

MPIL

Solution

*Mesos is a common resource sharing layer
over which diverse frameworks can run

——

O | e |

e
0 (S R

Other Benefits of Mesos

*Run multiple instances of the same
framework
— Isolate production and experimental jobs
— Run multiple versions of the framework
concurrently
*Build specialized frameworks targeting
particular problem domains

— Better performance than general-purpose
abstractions

Mesos Goals

* High utilization of resources

* Support diverse frameworks (current &
future)

* Scalability to 10,000’s of nodes
* Reliability in face of failures

core that pushes scheduling logic to

[Resulting design: Small microkernel-like
frameworks

|

12

11/27/12

Design Elements

*Fine-grained sharing;:

— Allocation at the level of tasks within a job

— Improves utilization, latency, and data locality
*Resource offers:

— Simple, scalable application-controlled
scheduling mechanism

Element 1: Fine-Grained Sharing

Fine-Grained Sharing (Mesos):
| Fw 3 Fw.3 m Fw. 1
M Fw. 1 H Fw. 2 Fw 2

Fw2 | Fw.1 | ; w.
Fw. 3 Fw3 Fw.

l\‘

Coarse-Grained Sharing (HPC):

Framework 3
TEE0

Storage System (e.g. HDFS)

Storage System (e.g. HDFS)

+ Improved utilization, responsiveness, data locality

Element 2: Resource Offers

*Option: Global scheduler
— Frameworks express needs in a specification

language, global scheduler matches them to
resources

+ Can make optimal decisions

*— Complex: language must support all framework

needs

— Difficult to scale and to make robust

— Future frameworks may have unanticipated needs

Element 2: Resource Offers

*Mesos: Resource offers
— Offer available resources to frameworks, let
them pick which resources to use and which
tasks to launch

+ Keeps Mesos simple, lets it support future
framew;oﬂ(sasaz 9 0975 31

- De@ ’1% B HaER biid gﬁ“”%é@gﬁ?@umal

2.8

It mm

4

% VideoScreen A Ext Cliib

13

11/27/12

Mesos Architecture

‘ MPI job ‘ ‘ Hadoop job ‘
1 1
MPI Hadoop
scheduler scheduler
Mesos Pick framework to
Resource offer resources to
offer

Mesos slave

Mesos slave

Mesos Architecture

MPI job Hadoop job
T T
MPI Hadoop
scheduler scheduler

list of (node, K
availableResources) LTSRS D
resources to

E.g. {(nodel, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2

Mesos slave’ T Mesos slave
i 1 MPI MPI
executor executor
task task
Mesos Architecture Summary
‘ MPT job ‘ ‘ Hadoop job ‘ .
3 3 rameworke * Cloud computing/datacenters are the new
MPI H. .
o | LT computer
; — Emerging “operating system” appearing
Mesos Pick framework to
Resource offer resources to .
offer * Pieces of the OS
— High-throughput filesystems (GFS/HDES)
Mesos slave Mesos slave Launches and
0 M MPI | Hadoop isolates executors

executor executor || executor

—Job frameworks (MapReduce, Pregel)
— High-level query languages (Pig, Hive)

14

