Cloud Computing

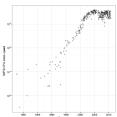
Ali Ghodsi UC Berkeley, AMPLab alig@cs.berkeley.edu

Background of Cloud Computing

- 1990: Heyday or parallel computing, multi-processors
 - Cannot make computers faster, they'll overheat, cannot make transistors smaller, etc.
 - Multiprocessors the only way to go
- But computers continued doubling in speed
 - Smaller transistors, better cooling, ...

Multi-core Revolution

• 15-20 years later than predicted, we have hit the performance wall

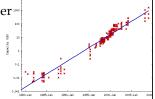


At the same time...

· Amount of stored data is exploding...

Data Deluge

- Billions of users connected through the net
 - WWW, FB, twitter, cell phones, ...
 - -80% of the data on FB was produced last year
- Storage getting cheaper
 - Store evermore data



Solving the Impedance Mismatch

- · Computers not getting faster, drowning in data
 - How to resolve the dilemma?
- · Solution adopted by web scale companies
 - Go massively distributed and parallel

Enter the World of Distributed **Systems**

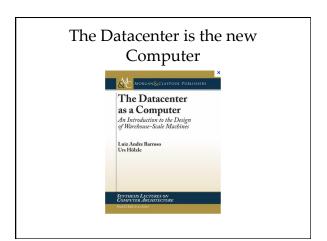
- Distributed Systems/Computing
 Loosely coupled set of computers, communicating through message passing, solving a common goal
- Distributed computing is challenging
 - Dealing with partial failures (examples?)
 - Dealing with *asynchrony* (examples?)
- Disitributed Computing vs Parallel Computing?
 - distributed computing=parallel computing+partial

Dealing with Distribution

- · Some tools to help distributed programming
 - Message Passing Interface (MPI)
 - Distributed Shared Memory (DSM)
 - Remote Procedure Calls (RPC)
 - RMI, WS, SOA
- · Distributed programming still very hard

Nascent Cloud Computing

- Inktomi, founded by Eric Brewer/UCB
 - Pioneered most of the concepts of cloud computing
 - First step toward an operating system for the datacenter



Datacenter OS

- If the datacenter is the new computer
 - what is it's **operating system**?
 - NB: not talking of a host OS

Classical Operating Systems

- · Data sharing
 - IPC, files, pipes, ...
- Programming Abstractions
 - Libraries (libc), system calls, ...
- Multiplexing of resources
 - Time sharing, virtual memory, ...

Datacenter Operating System

- · Data sharing
 - Google File System, key/value stores
- Programming Abstractions
 - Google MapReduce, PIG, Hive, Spark
- Multiplexing of resources
 - Mesos, YARN, ZooKeeper, BookKeeper...

Google Cloud Infrastructure

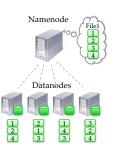
- Google File System (GFS), 2003
 - Distributed File System for entire cluster
 - Single namespace
- Google MapReduce (MR), 2004
 - Runs queries/jobs on data
 - Manages work distribution & faulttolerance
 - Colocated with file system

• Open source versions Hadoop DFS and Hadoop MR

Google File System (GFS) Hadoop Distributed File System (HDFS)

GFS/HDFS Architecture

- · Files split into blocks
- Blocks replicated across several *datanodes*
- *Namenode* stores metadata (file names, locations, etc)



GFS/HDFS Insights

- Petabyte storage
 - Large block sizes (128 MB)
 - Less metadata about blocks enables centralized architecture
 - Big blocks allow high throughput sequential reads/ writes
- Data striped on hundreds/thousands of servers
 - Scan 100 TB on 1 node @ 50 MB/s = 24 days
 - Scan on 1000-node cluster = 35 minutes

GFS/HDFS Insights (2)

- Failures will be the norm
 - Mean time between failures for 1 node = 3 years
 - Mean time between failures for 1000 nodes = 1 day
- Use commodity hardware
 - Failures are the norm anyway, buy cheaper hardware
- No complicated consistency models
 - Single writer, append-only data

MapReduce

MapReduce Model

- Data type: key-value records
- Map function:

$$(K_{in'} V_{in}) \rightarrow list(K_{inter'} V_{inter})$$

- Group all identical \boldsymbol{K}_{inter} values and pass to reducer
- Reduce function:

$$(K_{inter}, list(V_{inter})) \rightarrow list(K_{out}, V_{out})$$

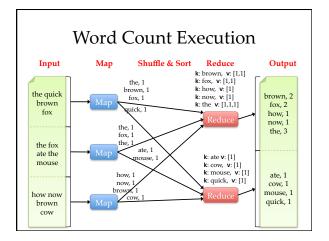
Example: Word Count

Input: key is filename, value is a line in input file

def mapper(file, line):
 foreach word in line.split():
 output(word, 1)

Intermediate: key is a word, value is 1

def reducer(key, values):
 output(key, sum(values))



What is MapReduce Used For?

- · At Google:
 - Index building for Google Search
 - Article clustering for Google News
 - Statistical machine translation
- At Yahoo!:
 - Index building for Yahoo! Search
 - Spam detection for Yahoo! Mail
- · At Facebook:
 - Data mining
 - Ad optimization
 - Spam detection

MapReduce Model Insights

- · Restricted model
 - Same fine-grained operation (m & r) repeated on big data
 - Operations must be **deterministic**
 - Operations must have no side effects
 - Only communication is through the shuffle
 - Operation (m & r) output saved (on disk)

MapReduce pros

- Distribution is completely transparent
 - Not a single line of distributed programming
- Automatic fault-tolerance
 - Determinism enables running failed tasks somewhere else again
 - Saved intermediate data enables just rerunning failed reducers

MapReduce pros

- Automatic scaling
 - As operations as side-effect free, they can be distributed to any number of machines dynamically
- Automatic load-balancing
 - Move tasks and speculatively execute duplicate copies of slow tasks (stragglers)

MapReduce cons

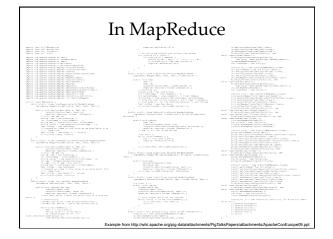
- Restricted programming model
 - Not always natural to express problems in
 - Low-level coding necessary
 - Little support for iterative jobs
 - High-latency (batch processing)
- · Addressed by follow-up research
 - Pig and Hive for high-level coding
 - Spark for iterative and low-latency jobs

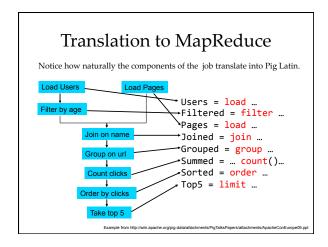
PIG & Hive

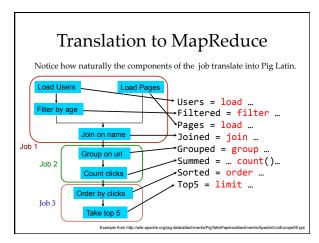
Pig

- High-level language:
 - Expresses sequences of MapReduce jobs
 - Provides relational (SQL) operators (JOIN, GROUP BY, etc)
 - Easy to plug in Java functions
- · Started at Yahoo! Research
 - Runs about 50% of Yahoo!'s jobs

An Example Problem Suppose you have user data in one file, website data in another, and you need to find the top 5 most visited pages by users aged 18-25. Load Users Load Pages Filter by age Group on url Count clicks Order by clicks Take top 5



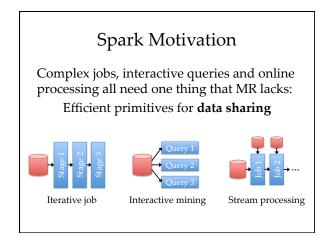


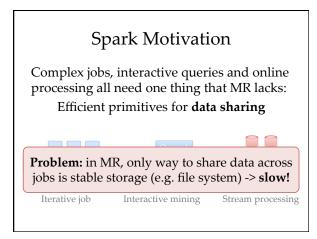


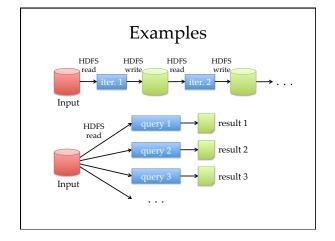
Hive

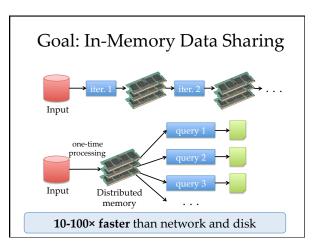
- · Relational database built on Hadoop
 - Maintains table schemas
 - SQL-like query language (which can also call Hadoop Streaming scripts)
 - Supports table partitioning, complex data types, sampling, some query optimization
- Developed at Facebook
 - Used for most Facebook jobs

Spark









Solution: Resilient Distributed Datasets (RDDs)

- Partitioned collections of records that can be stored in memory across the cluster
- Manipulated through a diverse set of transformations (*map*, *filter*, *join*, etc)
- Fault recovery without costly replication
 Remember the series of transformations that built an RDD (its *lineage*) to *recompute* lost data
- www.spark-project.org

Mesos

Background

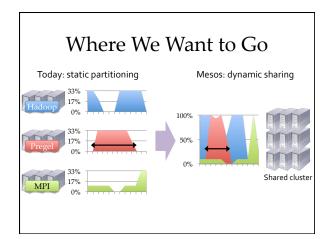
•Rapid innovation in cluster computing frameworks

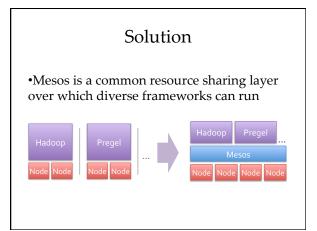
Dryad

CIEL

Problem

- •Rapid innovation in cluster computing frameworks
- •No single framework optimal for all applications
- •Want to run multiple frameworks in a single cluster
- » ...to maximize utilization
- » ...to share data between frameworks





Other Benefits of Mesos

- •Run multiple instances of the *same* framework
 - Isolate production and experimental jobs
 - Run multiple versions of the framework concurrently
- •Build *specialized frameworks* targeting particular problem domains
 - Better performance than general-purpose abstractions

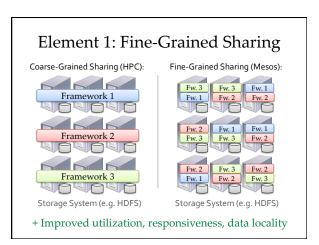
Mesos Goals

- High utilization of resources
- **Support diverse frameworks** (current & future)
- Scalability to 10,000's of nodes
- Reliability in face of failures

Resulting design: Small microkernel-like core that pushes scheduling logic to frameworks

Design Elements

- •Fine-grained sharing:
 - Allocation at the level of tasks within a job
 - Improves utilization, latency, and data locality
- •Resource offers:
 - Simple, scalable application-controlled scheduling mechanism



Element 2: Resource Offers

- •Option: Global scheduler
 - Frameworks express needs in a specification language, global scheduler matches them to resources
 - + Can make optimal decisions
- •– Complex: language must support all framework needs
- Difficult to scale and to make robust
- Future frameworks may have unanticipated needs

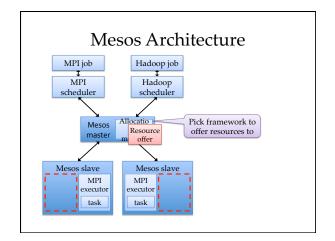
Element 2: Resource Offers

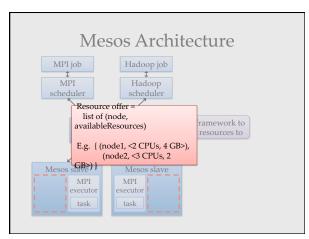
- •Mesos: Resource offers
 - Offer available resources to frameworks, let them pick which resources to use and which tasks to launch
 - + Keeps Mesos simple, lets it support future frameworks 25 23 21 19 17 15 18 11 9 7 5 3 1

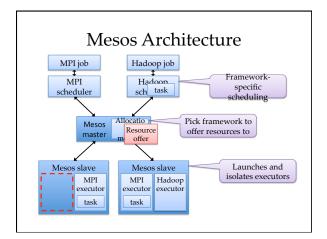
 Decentralized decisions might not be optimal

 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

☆ Video Screen 🔺 Exit 🔳 Club







Summary

- Cloud computing/datacenters are the new computer
 - Emerging "operating system" appearing
- · Pieces of the OS
 - High-throughput filesystems (GFS/HDFS)
 - Job frameworks (MapReduce, Pregel)
 - High-level query languages (Pig, Hive)