
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 25  
 

P2P Systems and Review"

November 28, 2012!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 25.2!11/28! Ion Stoica CS162 ©UCB Fall 2012!

P2P Traffic"
•  2004: some Internet Service Providers (ISPs) claimed >

50% was p2p traffic!

Lec 25.3!11/28! Ion Stoica CS162 ©UCB Fall 2012!

P2P Traffic"
•  Today, around 18-20% (North America)!
•  Big chunk now is video entertainment (e.g., Netflix, iTunes)!

Lec 25.4!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Peer-to-Peer Systems "
•  What problem does it try to solve?!

– Provide highly scalable, cost effective (i.e., free!)
services, e.g.,!

» Content distribution (e.g., Bittorrent)!
»  Internet telephony (e.g., Skype)!
»  Video streaming (e.g., Octoshape)!
» Computation (e.g., SETI@home)!

•  Key idea: leverage “free” resources of users (that use
the service), e.g.,!

– Network bandwidth!
– Storage!
– Computation!

Page 2

Lec 25.5!11/28! Ion Stoica CS162 ©UCB Fall 2012!

How Did it Start?"

•  A killer application: Napster (1999)!
– Free music over the Internet!

•  Use (home) user machines to store and distribute songs!

!

Internet!

Lec 25.6!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Model"
•  Each user stores a subset of files!
•  Each user has access (can download) files from all

users in the system!

A!
B!

C!

D!

E!
F!

Lec 25.7!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Main Challenge"
•  Find a “good” node storing a specified file!
•  By “good” we mean:!

– Has correct content!
– Can get content fast!
– …!

A!
B!

C!

D!

E!
F!

E?!

Lec 25.8!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Other Challenges"
•  Scale: up to hundred of thousands or millions of

machines !

•  Dynamicity: machines can come and go at any time!

•  Heterogeneity: nodes with widely different resources
and connectivity !

Page 3

Lec 25.9!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Napster"
•  Implements a centralized lookup/directory service that maps

files (songs) to machines currently in the system!

•  How to find a file (song)?!
– Query the lookup service à return a machine that stores the

required file!
» Ideally this is the closest/least-loaded machine!

– Download (ftp/http) the file!

•  Advantages: !
– Simplicity, easy to implement sophisticated search engines on

top of a centralized lookup service!
•  Disadvantages:!

– Robustness, scalability (?)!
Lec 25.10!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Napster: Example"
1)  A client (initiator) contacts directory service to get file
“C”!

2)  Directory service returns a (possible) close by and lightly
loaded peer (m5) storing “C”!

3)  Client contacts directly m5 to get file “C” !

m3!
m4! m5! m6!

m7!
m8!

m9!

m2!

m1!

A"

B"

B"C"
C"
D"

A: m3"
B: m1, m7"
C: m5, m8"
D: m8"
…"

C?!

initiator!

m5!

C?!

C"

Directory !
service!

Lec 25.11!11/28! Ion Stoica CS162 ©UCB Fall 2012!

The Rise and Fall of Napster"
•  Founded by Shawn Fanning, John

Fanning, and Sean Parker!
•  Operated between June 1999 and July

2001!
– More than 26 million users (February

2001)!

•  Several high profile songs were leaked
before being released:!

– Metallica’s “I Disappear” demo song !
– Madonna’s “Music” single!

•  But, also helped made some bands
successful (e.g., Radiohead, Dispatch)!

•  (Reemerged as music store in 2008)!

(Source: http://en.wikipedia.org/wiki/
File:Napster_Unique_Users.svg)!

Lec 25.12!11/28! Ion Stoica CS162 ©UCB Fall 2012!

The Aftermath"
•  “Recording Industry Association of America (RIAA)

Sues Music Startup Napster for $20 Billion” –
December 1999!

•  “Napster ordered to remove copyrighted material”
– March 2001!

•  Main legal argument: "
– Napster owns the lookup service, so it is directly

responsible for disseminating copyrighted material"

Page 4

Lec 25.13!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella (2000)"
•  What problem does it try to solve?!

– Get around the legal vulnerabilities by getting rid of the
centralized directory service!

•  Main idea: Flood the request to peers in the system
to find file!

Lec 25.14!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella (2000)"

•  How does request flooding work?!
– Send request to all neighbors!
– Neighbors recursively send request to their neighbors!
– Eventually a machine that has the file receives the request,

and it sends back the answer!

•  Advantages:!
– Totally decentralized, highly robust!

•  Disadvantages:!
– Not scalable; the entire network can be swamped with

requests (to alleviate this problem, each request has a TTL)!
»  TTL (Time to Leave): request dropped when TTL reaches 0 !

Lec 25.15!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Time To Live (TTL)"

•  When the client (initiator) sends a request, it associates
a TTL with the request!

•  When a node forwards the request it decrements the
TTL!

•  When TTL reaches 0, the request is no longer forwarded!
•  Typically, Gnutella uses TTL = 7!

•  Example: TTL = 3!

TTL = 3! TTL = 2! TTL = 1! TTL = 0!

Stop forwarding !
request!

initiator!

Lec 25.16!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Assume a client (initiator) asks for file “C”!
•  Assume TTL=2!

C"

C"A"

B"

B"

D"

initiator!

Page 5

Lec 25.17!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Initiator send request to its neighbor(s)…!
•  … which recursively forward the request to their neighbors!
•  At the 3rd hop request is dropped!

C"

C"A"

B"

B"

D"

initiator!

C ?"

Lec 25.18!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  If node has the requested file it sends a reply back !

– along the reverse path of the request, or!
– directly to initiator !

C"

C"A"

B"

B"

D"

initiator!

C ?"

m"
m"m"m"

Lec 25.19!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Initiator request file “C” from node “m”!

–  Initiator may pick one of several machines if receive multiple
replies!

C"

C"A"

B"

B"

D"

initiator!

C"

m"

Lec 25.20!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  What problem does it try to solve?!

–  Inefficient search!

•  Main idea: organize the p2p system in a two level
hierarchy!

– Flooding happens only at the top level!

Page 6

Lec 25.21!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  KaZaa, subsequent versions of Gnutella!
•  Leaf nodes are connected to a small number of ultrapeers

(supernodes)!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

Leaf nodes

Ultrapeer
nodes

m1!

Lec 25.22!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  Each ultra-peer builds a director for the

content stored at its peers!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

Leaf nodes

Ultrapeer
nodes

m1!

Lec 25.23!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer has requested content in its directory, the

ultrapeer replies immediately!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m2"

B?"

Lec 25.24!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer doesn’t have content in its directory, the

ultrapeer floods other ultrapeers!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m15"

A?"

A
?"

A?"

m
15"

Page 7

Lec 25.25!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Example: Oct 2003 Crawl on Gnutella"

Ultrapeer nodes
Leaf nodes

Lec 25.26!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Recall: Distributed Hash Tables (DHTs)"
•  Distribute (partition) a hash table data structure across a

large number of servers!
– Also called, key-value store!

!
•  Two operations!

– put(key, data); // insert “data” identified by “key”!
– data = get(key); // get data associated to “key” !

key, value

…"

Lec 25.27!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Recall: DHTs (cont’d)"

•  Project 4: puts and gets are serialized through a master"
– Master knows all nodes (slaves) in the system!
– Master maintains mapping between keys and nodes!
– Simple but doesn’t scale for large, dynamic p2p systems!

•  Next: an efficient decentralized lookup protocol!
– Many proposals: CAN, Chord, Pastry, Tapestry, Kademlia, …!
– Used in practice, e.g., eDonkey (based on Kademlia)!

Lec 25.28!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Recall: DHTs (cont’d)"
•  Lookup service: given a key (ID), map it to node n!

n = lookup(key);!

•  Can invoke put() and get() at any node m!
! !!

!m.put(key, data) { !
!n = lookup(key); // get node “n” mapping “key”!
!n.store(key, data); // store data at node “n”!

!}!

!data = m.get(key) { !
!n = lookup(key); // get node “n” storing data associated to “key” !
!return n.retrieve(key); // get data stored at “n” associated to
“key” !

!}!

Page 8

Lec 25.29!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Chord Lookup Service"

•  Associate to each node and item a unique key in an uni-
dimensional space 0..2m-1!

– Partition this space across N machines!
– Each key is mapped to the node with the smallest ID larger

than the key (consistent hashing)!

•  Design approach: decouple correctness from efficiency"

•  Properties !
– Routing table size (# of other nodes a node needs to know

about) is O(log(N)), where N is the number of nodes!
– Guarantees that a file is found in O(log(N)) steps!

Lec 25.30!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Identifier to Node Mapping Example
(Consistent hashing)"

•  m = 6; ID range 0..63 !
•  Node 8 maps [5,8]!
•  Node 15 maps [9,15]!
•  Node 20 maps [16, 20]!
•  …!
•  Node 4 maps [59, 4]!

•  Each node maintains a
pointer to its successor!

4

20

32 35

8

15

44

58

Lec 25.31!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Lookup"

•  Each node maintains
pointer to its successor !

•  Route lookup(key) to the
node responsible for key
using successor pointers!

•  E.g., node=4 lookups for
node responsible for
key=37 !

4

20

32 35

8

15

44

58

lookup(37)

node=44 is
responsible
for key=37

Lec 25.32!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Stabilization Procedure"
•  Periodic operation performed by each node n to maintain

its successor when new nodes join the system!

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x; // if x better successor, update !
 succ.notify(n); // n tells successor about itself "
"
n.notify(n’)"
 if (pred = nil or n’ (pred, n))"
 pred = n’; // if n’ is better predecessor, update!
 "

€

∈

€

∈

Page 9

Lec 25.33!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  Node with key=50
joins the ring!

§  Node 50 needs to
know at least one
node already in the
system!
-  Assume known

node is 15!
! !
!!

succ=4
pred=44

succ=nil
pred=nil

succ=58"
pred=35"

Lec 25.34!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 sends join(50)
to node 15 !

§  n=44 returns node 58 !
§  n=50 updates its

successor to 58!
join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

Lec 25.35!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 executes
stabilize()!

§  n’s successor
(58) returns x = 44!

pred=nil

succ=58
pred=35

x=
44

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

Lec 25.36!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 executes
stabilize()!
§  x = 44!
§  succ = 58!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

Page 10

Lec 25.37!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 executes
stabilize()!
§  x = 44!
§  succ = 58!

§  n=50 sends to it’s
successor (58)
notify(50)!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

no
tif

y(
50

)

Lec 25.38!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=58 processes
notify(50)!
§  pred = 44!
§  n’ = 50!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)"
 if (pred = nil or n’ (pred, n))"
 pred = n’"
 "
"

€

∈

succ=58

no
tif

y(
50

)

Lec 25.39!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=58 processes
notify(50)!
§  pred = 44!
§  n’ = 50!

§  set pred = 50!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)"
 if (pred = nil or n’ (pred, n))"
 pred = n’"
 "
"

€

∈

succ=58

no
tif

y(
50

)

pred=50

Lec 25.40!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=44 runs
stabilize()!

§  n’s successor
(58) returns x = 50!

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

x=50

Page 11

Lec 25.41!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=44 runs
stabilize()!
§  x = 50!
§  succ = 58!

!

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

Lec 25.42!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=44 runs
stabilize()!
§  x = 50!
§  succ = 58!

§  n=44 sets
succ=50!

! pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

succ=50

Lec 25.43!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=44 runs
stabilize()!

§  n=44 sends
notify(44) to its
successor !

!

pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

€

∈

succ=58

notify(44)

Lec 25.44!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 processes
notify(44)!
§  pred = nil!

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)"
 if (pred = nil or n’ (pred, n))"
 pred = n’"
 "
"

€

∈

succ=58

notify(44)

Page 12

Lec 25.45!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation"

4

20

32 35

8

15

44

58

50

§  n=50 processes
notify(44)!
§  pred = nil!

§  n=50 sets pred=44!

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)"
 if (pred = nil or n’ (pred, n))"
 pred = n’"
 "
"

€

∈

succ=58

notify(44)

pred=44

Lec 25.46!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Joining Operation (cont’d)"

4

20

32 35

8

15

44

58

50

§  This completes the joining
operation!!

succ=58

succ=50

pred=44

pred=50

Lec 25.47!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Achieving Efficiency: finger tables!

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Lec 25.48!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Details"
•  Lookup complexity O(log N)!

– Every hop the distance to target is at least halved!

•  To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor!

•  Successor S of a node N can send its K-1 successors
to N during N’s stabilize() procedure!

Page 13

Lec 25.49!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Announcements"
•  Final code due: Thursday, Dec 6, 11:59pm!

•  Final design document and group evaluation due:
Friday, Dec 7, 11:59pm!

•  Final exam: Thursday, Dec 13, 8-11am!
– Close books!
– Double face cheat sheet!
– Comprehensive, but greater focus on material since

midterm (30% / 70%)!

•  Final Review: Wednesday, Dec 5, 6-9pm, 60 Evans
Hall!

Lec 25.50!11/28! Ion Stoica CS162 ©UCB Fall 2012!

5min Break"

Lec 25.51!11/28! Ion Stoica CS162 ©UCB Fall 2012!

P2P Summary"

•  The key challenge of building wide area P2P systems is
a scalable and robust directory service!

•  Solutions!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!
– CAN, Chord, Tapestry, Pastry: intelligent-routing

decentralized solution !
» Guarantee correctness!

Lec 25.52!11/28! Ion Stoica CS162 ©UCB Fall 2012!

CS162: Summary"
•  OS functions:!

– Manage system resources!
– Provide services: storage, networking, … !
– Provide a VM abstraction to processes/users: give illusion

to each process/user that is using a dedicated machine!

•  Challenges!
– Virtualize system resources!

»  Virtual Memory (VM): address translation, demand paging!
» CPU scheduling!

– Arbitrate access to resources and data!
» Concurrency control, synchronization !
» Deadlock prevention, detection!

Page 14

Lec 25.53!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Key Concept: Synchronization"
•  Allow multiple processes to share data!
•  Why it is challenging?!

– Want high utilization: need fine grain sharing!
– Avoid non-determinism!

•  Many primitives/mechanisms!
– Locks, Semaphores, Monitors (condition variables)!

•  Many examples:!
– Producer-consumer (bounded buffer, flow control)!
– Reade/Writer problem!
– Transactions!

 Most likely concept you’ll use in your job!
Lec 25.54!11/28! Ion Stoica CS162 ©UCB Fall 2012!

OS is Evolving"

•  Vast majority of apps are distributed today!
– E.g., mail, Facebook/Twitter, Skype, Google docs, …!

•  More and more OSes integrate remote services!
– E.g., iOS (iCloud), Chrome OS, Windows 8!

•  One example in this class (project 4): reliable and consistent
key-value store!

– Give you taste of challenges of building a distributed system!
– Why hard?!

» Nodes can fail: may lose data, render service unavailable!
» Network can get congested or partitioned: slow/unavailable service !
»  Scale: a p2p network can consists of million of nodes !!

Lec 25.55!11/28! Ion Stoica CS162 ©UCB Fall 2012!

Conclusion"

•  OS inherently covers many topics!
– More an more services migrate into OS (e.g., networking,

search)!
•  If you want to focus on some of these topics!

– Database class (CS 186)!
– Networking class (EE 122)!
– Security class (CS 161)!
– Software engineering class (CS 169)!

•  If you want to focus on OS!
– New upper-level OS class, CS 194 (John Kubiatowicz), Spring

2013!
– Undergraduate research projects in the AMP Lab!

»  Akaros and Mesos projects !

!

