CS162
Operating Systems and
Systems Programming

Lecture 25

P2P Systems and Review

November 28, 2012
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

P2P Traffic

+ 2004: some Internet Service Providers (ISPs) claimed >
50% was p2p traffic

Internet Protocol Trends (1)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

% Email * FTP ® Other ® P2P ® Web

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.2

P2P Traffic
» Today, around 18-20% (North America)
+ Big chunk now is video entertainment (e.g., Netflix, iTunes)

100%

Outside top 5
Secure Tunneling
= Gaming

 Social Networking

B Bulk Entertainmant
 Rezl-Time Communications

mWeb Browsing

B P2P Filesharing

49.2%
20% 42.7% Real-Time Entertainment

29.5%

11/28 2008 2010 2011 Lec 25.3

Peer-to-Peer Systems

» What problem does it try to solve?
— Provide highly scalable, cost effective (i.e., free!)
services, e.g.,
» Content distribution (e.g., Bittorrent)
» Internet telephony (e.g., Skype)
» Video streaming (e.g., Octoshape)
» Computation (e.g., SETI@home)

-+ Key idea: leverage “free” resources of users (that use
the service), e.g.,

— Network bandwidth
— Storage
— Computation

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.4

How Did it Start?

» A Killer application: Napster (1999)
— Free music over the Internet

+ Use (home) user machines to store and distribute songs

Internet
g, Ba
! @Al
11/28 lon Stoica CS162 ©UCB Fall 2012

Lec 25.5

Main Challenge

+ Find a “good” node storing a specified file
+ By “good” we mean:

— Has correct content

— Can get content fast

Be

e
Ve

(B]

11/28 lon Stoica CS162 ©UCB Fall 2012

Lec 25.7

Page 2

11/28

Model

» Each user stores a subset of files

» Each user has access (can download) files from all
users in the system

(@
/i

e g

S]

fo g, Do

lon Stoica CS162 ©UCB Fall 2012 Lec 25.6

machines

Other Challenges

+ Scale: up to hundred of thousands or millions of

+ Dynamicity: machines can come and go at any time

+ Heterogeneity: nodes with widely different resources
and connectivity

11/28

lon Stoica CS162 ©UCB Fall 2012 Lec 25.8

Napster

+ Implements a centralized lookup/directory service that maps
files (songs) to machines currently in the system

+ How to find a file (song)?

— Query the lookup service - return a machine that stores the
required file

» |deally this is the closest/least-loaded machine
— Download (ftp/http) the file

+ Advantages:

— Simplicity, easy to implement sophisticated search engines on
top of a centralized lookup service

» Disadvantages:

— Robustness, scalability (?)
11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.9

The Rise and Fall of Napster

NapstorUrique Users Over Trmo

+ Founded by Shawn Fanning, John
Fanning, and Sean Parker L
+ Operated between June 1999 and Julyo |
2001

— More than 26 million users (February
2001)

+ Several high profile songs were Ieaked
before being released: e —

— Metallica’ s “I D|Sappear” demo song (Source: http://en.wikipedia.org/wiki/
P s File:Napster_U U X
- Madonna’ s “Music” single toNapster_uniaue-Userssvo)

+ But, also helped made some bands
successful (e.g., Radiohead, Dispatch)

+ (Reemerged as music store in 2008)

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.11

Page 3

11/28

Napster: Example
1) A client (initiator) contacts directory service to get file
“c”

2) Directory service returns a (possible) close by and lightly
loaded peer (m5) storing “C”

8) Client contacts directly m5-tonat file “c”

Directory 'B-m1. m7 |
service * ¢ C: m5, m8
D: m8

initiator
lon Stoica CS162 ©UCB Fall 2012 Lec 25.10

11/28

The Aftermath

» “Recording Industry Association of America (RIAA)
Sues Music Startup Napster for $20 Billion” —
December 1999

« “Napster ordered to remove copyrighted material”
— March 2001

+ Main legal argument:

— Napster owns the lookup service, so it is directly
responsible for disseminating copyrighted material

lon Stoica CS162 ©UCB Fall 2012 Lec 25.12

Gnutella (2000)

+ What problem does it try to solve?

— Get around the legal vulnerabilities by getting rid of the
centralized directory service

» Main idea: Flood the request to peers in the system
to find file

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.13

Gnutella: Time To Live (TTL)

+ When the client (initiator) sends a request, it associates
a TTL with the request

« When a node forwards the request it decrements the
TTL

+ When TTL reaches 0, the request is no longer forwarded
+ Typically, Gnutella uses TTL =7

+ Example: TTL=3

JTL=3 TTL=2 TTL=1 TTL=0
initiator Stop forwarding
request
11728 lon Stoica CS162 GUCB Fall 2012 Lec 25.15

Page 4

Gnutella (2000)

* How does request flooding work?
— Send request to all neighbors
— Neighbors recursively send request to their neighbors

— Eventually a machine that has the file receives the request,
and it sends back the answer

+ Advantages:
— Totally decentralized, highly robust

Disadvantages:

— Not scalable; the entire network can be swamped with
requests (to alleviate this problem, each request has a TTL)

» TTL (Time to Leave): request dropped when TTL reaches 0

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.14

Gnutella: Example

- Assume a client (initiator) asks for file “C”
+ Assume TTL=2

initiator

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.16

Gnutella: Example

+ Initiator send request to its neighbor(s)...
+ ... which recursively forward the request to their neighbors
- At the 3" hop request is dropped

\/ = /_

—

17

i~

A AL

'
i

V.

AN -
NN

11/28 lon Stoica CS162 ©UCB Fall 2012

|

Lec 25.17

Gnutella: Example

« Initiator request file “C” from node “m”

— Initiator may pick one of several machines if receive multiple
replies

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.19

Page 5

Gnutella: Example

« If node has the requested file it sends a reply back
— along the reverse path of the request, or
— directly to initiator

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.18

Two-Level Hierarchy

» What problem does it try to solve?
— Inefficient search

+ Main idea: organize the p2p system in a two level
hierarchy

— Flooding happens only at the top level

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.20

)

Two-Level Hierarch)
LR A)
+ KaZaa, subsequent versions of Gnutella

+ Leaf nodes are connected to a small number of ultrapeers

(supernodes)
m3

w

7

3

=
m1
.
UItrapeer
nodes
=
/I\ e
mi7 o "
m B N\
= B Leaf nodes
m m13
11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.21

Gnutella: Example VS PR
P a4 A
+ Query: A leaf sends query to its ultrapeers

+ If ultrapeer has requested content in its directory, the

ultrapeer replies immediately

m7

e
m10
e
m11

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.23

Page 6

Two-Level Hierarchy 6

« Each ultra-peer builds a director for the
content stored at its peers

'w!"%

m11
Leaf nodes

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.22

Gnutella: Example VS PR
P Aol 4a2
+ Query: A leaf sends query to its ultrapeers

- If ultrapeer doesn’ t have content in its directory, the

ultrapeer floods other ultrapeers

m3 m7

m2

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.24

Example: Oct 2003 Crawl on Gnutella

Ultrapeer nodes Leaf nodes

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.25

Recall: DHTs (cont’ d)

+ Project 4: puts and gets are serialized through a master
— Master knows all nodes (slaves) in the system
— Master maintains mapping between keys and nodes
— Simple but doesn’ t scale for large, dynamic p2p systems

+ Next: an efficient decentralized lookup protocol
— Many proposals: CAN, Chord, Pastry, Tapestry, Kademlia, ...
— Used in practice, e.g., eDonkey (based on Kademlia)

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.27

Page 7

Recall: Distributed Hash Tables (DHTSs)

« Distribute (partition) a hash table data structure across a
large number of servers

— Also called, key-value store
// { ==

+ Two operations
— put(key, data); / insert “data” identified by “key”
— data = get(key); // get data associated to “key”

key.value

key,

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.26

Recall: DHTs (cont’ d)

+ Lookup service: given a key (ID), map it to node n
n = lookup(key);

« Can invoke put() and get() at any node m

m.put(key, data) {
n = lookup(key); // get node “n” mapping “key”
n.store(key, data); // store data at node “n”

}

data = m.get(key) {
n = lookup(key); // get node “n” storing data associated to “key”

return n.retrieve(key); / get data stored at “n” associated to
e

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.28

Identifier to Node Mapping Example

h Look i
Chord Lookup Service (Consistent hashing)

a]

+ Associate to each node and item a unique key in an uni- - -
dimensional space 0..2m-1 + m=6; ID range 0..63 @
— Partition this space across N machines + Node 8 maps [5,8]
— Each key is mapped to the node with the smallest ID larger + Node 15 maps [9,15]
than the key (consistent hashing) + Node 20 maps [16,20]

1

) 1

1

- Design approach: decouple correctness from efficiency Node 4 maps [59, 41
\

+ Properties + Each node maintains a

— Routing table size (# of other nodes a node needs to know pointer to its successor
about) is O(log(N)), where N is the number of nodes

— Guarantees that a file is found in O(log(N)) steps 35
11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.29 11/28 lon Stoica CS162 ©UCB kFaII 2012@ Lec 25.30
Lookup Stabilization Procedure
ﬁ lookup(37) + Periodic operation performed by each node n to maintain

its successor when new nodes join the system

Each node maintains @
pointer to its successor

n.stabilize()

Route lookup(key) to the X = succ.pred;
node responsible for key if (xe (n, succ))
using successor pointers node=44 is - i . .
Tl @ succ =x; // if x better successor, update

for key=37 ’ succ.notify(n); // n tells successor about itself

E.g., node=4 lookups for
node responsible for

key=37 @ . n.notify(n’)
: @ if (pred = nil or n’c (pred, n))

pred =n’; /I if n’ is better predecessor, update

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.31 11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.32

Page 8

Joining Operation

succ=4 E

- Node with key=50 pred=44ﬁ

joins the ring

- Node 50 needs to
know at least one
node already in the

system i
- Assume known S¥cc=ni [
) d=nil -
node is 15 pre : {
' 50 151l
succ=58 |
pred=35 &

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.33

Joining Operation

succ=4
pred=

= n=50 executes
stabilize()

= n’s successor
(58) returns x = 44

suce=58 [
pred=nil 50 15 ﬁ
succ=58 [L -
pred=35¥l ﬁ
n.stabilize()
=» X =succ.pred;

if (xe (n, succ))
succ =X;
succ.notify(n);

11/28 lon Stoica CS162 ©UCB Fall 2012

Lec 25.35

Page 9

to node 15

successor to 58

11/28

= n=50 sends join(50)

= n=44 returns node 58
= n=50 updates its

Joining Operation

succ=4 E

pred=44

58

Jjoin(50)

succ=hid
pred=nil

succ=58 L
pred=35

lon Stoica CS162 ©UCB Fall 2012 Lec 25.34

Joining Operation

succ=4 E

=
succ = X;
succ.notify(n)

X = succ.pred;
if (x& (n, succ))

= n=50 executes =44 |
stabilize() pred E =
= xXx=44 E
= succ =58
succ=58 |l
pred=nil 50 15 ﬁ
succ=58 [E E
pred=35U E
n.stabilize()

11/28

lon Stoica CS162 ©UCB Fall 2012

Lec 25.36

Joining Operation

-

n=50 executes succ=4 .
stabilize() Pfd=44 @
- x=44 @
= succ =58 S
n=50 sends to it’s N
successor (58)
notify(50) succ=58
pred=nil 50

succ=58 |

pred=35¥l
n.stabilize()

X = succ.pred;

if (xe (n, succ))
succ =X;

succ.notify(n);

11/28

lon Stoica CS162 ©UCB Fall 2012

Lec 25.37

Joining Operation

succ=4 E

=

n=58 processes
notify(50) Pr‘:d=59 @
-)
. pl:ed =44 o
= n =50 ég\
set pred = 50 <
suct::‘=_5_8I ";
pred=nil =)
succ=58 [L
pred=35¥l
n.notify(n’)

if (pred = nil or '€ (pred, n))

pred=n’

E §

11/28

lon Stoica CS162 ©UCB Fall 2012

Lec 25.39

Page 10

Joining Operation

« n=58 processes succ=4 .
notify(50) P'”:d-“ E
« pred=44 &
= n =50 ,'g\
N
succ=58 |
pred=nil 50
succ=58
pred=35¥

n.notify(n’)
if (pred = nil or n’E (pred, n))
pred=n’

& §

lon Stoica CS162 ©UCB Fall 2012

11/28

Lec 25.38

Joining Operation

succ=4
= n=44runs pred=5OE

stabilize()
= n’s successor

(58) returns x = 50 x=50

suctc:‘=5~8I
pred=nil &

succ=58 [L
pred=35¥

n.stabilize()
X = succ.pred;
if (xe(n, succ))
succ = X;
succ.notify(n);

& §

lon Stoica CS162 ©UCB Fall 2012

11/28

Lec 25.40

Joining Operation

succ=4 . E
n=44 runs d=50
stabilize() pred=5 @ i
= X=50 E
= succ =58
succ=58 -
pred=nil 15 @
succ=58 [L -
pred=35¥l @
n.stabilize()

X = succ.pred;

=» if (xe(n, succ)) -
succ =Xx; E E
succ.notify(n);
11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.41
Joining Operation
4 E
= n=44runs suce 0
stabilize() pred=50 [
= n=44 sends
notify(44) to its
successor
suce=58 [
pred=nil 50 15 ﬁ
noﬁfy(44x
succ=50 &
pred=35¥l ﬁ
n.stabilize()
X = succ.pred;
if (xe (n, succ)) 32
succ = X; E E
=» succ.notify(n); !

11/28

lon Stoica CS162 ©UCB Fall 2012

Lec 25.43

Page 11

Joining Operation

succ=4
Sz, pred=50 [§
= x=50
= succ =58
= n=44 sets
succ=50 E
succ=58
pred=nil 50
pred=35E
n.stabilize()

X = succ.pred;
if (xe(n, succ))

= succ = X; E E

succ.notify(n);

11/28 lon Stoica CS162 ©UCB Fall 2012

Lec 25.42

Joining Operation

« n=50 processes succ=4 .
notify(44) pred=50 ﬁ
= pred = nil

suctc:‘=5~8I ,,:
pred=nil 5,

noﬁfy(44x

suce=50 £
pred=35¥

n.notify(n’)
= if (pred = nil or n’E (pred, n))
pred=n’

11/28 lon Stoica CS162 ©UCB Fall 2012

Lec 25.44

Joining Operation

n=50 processes succ=4 .

notify(44) pred=50 @
pred = nil

n=50 sets pred=44

notify(44')\

succ=50 [
pred=35¥l

n.notify(n’)
if (pred = nil or n’E (pred, n))
= pred=n’

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.45

This completes the joining ol
operation! pred=50 E

11/28

Joining Operation (cont’ d)

lon Stoica CS162 ©UCB Fall 2012

Lec 25.46

Achieving Efficiency: finger tables

Say m=7

Finger Table at 80 B 0
i filil :
0 96

1 96
2 96 , .
3 96 80 +24 E
4 96 80+23

5 112 :
6 20

BOEZG) mod 27 = 16

ith entry at peer with id # is first peer with id >= 7+ 2'(mod2") ‘

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.47

11/28

Details

+ Lookup complexity O(log N)
— Every hop the distance to target is at least halved

+ To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

» Successor S of a node N can send its K-1 successors

to N during N’ s stabilize() procedure

lon Stoica CS162 ©UCB Fall 2012

Lec 25.48

Announcements

» Final code due: Thursday, Dec 6, 11:59pm

+ Final design document and group evaluation due:
Friday, Dec 7, 11:59pm

» Final exam: Thursday, Dec 13, 8-11am
— Close books
— Double face cheat sheet

— Comprehensive, but greater focus on material since
midterm (30% / 70%)

+ Final Review: Wednesday, Dec 5, 6-9pm, 60 Evans
Hall

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.49

P2P Summary

+ The key challenge of building wide area P2P systems is
a scalable and robust directory service

+ Solutions
— Naptser: centralized location service
— Gnutella: broadcast-based decentralized location service

— CAN, Chord, Tapestry, Pastry: intelligent-routing
decentralized solution
» Guarantee correctness

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.51

Page 13

5min Break

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.50

CS162: Summary

+ OS functions:
— Manage system resources
— Provide services: storage, networking, ...

— Provide a VM abstraction to processes/users: give illusion
to each process/user that is using a dedicated machine

+ Challenges
— Virtualize system resources
» Virtual Memory (VM): address translation, demand paging
» CPU scheduling
— Arbitrate access to resources and data
» Concurrency control, synchronization
» Deadlock prevention, detection

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.52

Key Concept: Synchronization

+ Allow multiple processes to share data

+ Why it is challenging?
— Want high utilization: need fine grain sharing
— Avoid non-determinism

» Many primitives/mechanisms
— Locks, Semaphores, Monitors (condition variables)

+ Many examples:
— Producer-consumer (bounded buffer, flow control)
— Reade/Writer problem
— Transactions

Most likely concept you’ll use in your job

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.53

Conclusion

+ OS inherently covers many topics

— More an more services migrate into OS (e.g., networking,
search)

« If you want to focus on some of these topics
— Database class (CS 186)
— Networking class (EE 122)
— Security class (CS 161)
— Software engineering class (CS 169)
« If you want to focus on OS

— New upper-level OS class, CS 194 (John Kubiatowicz), Spring
2013

— Undergraduate research projects in the AMP Lab
» Akaros and Mesos projects

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.55

Page 14

S
. . &Q& S
OS is Evolving % un
microsystems
» Vast majority of apps are distributed today | e vetwor i the computer~
— E.g., mail, Facebook/Twitter, Skype, Google docs, ...

+ More and more OSes integrate remote services
—E.g., i0S (iCloud), Chrome OS, Windows 8

« One example in this class (project 4): reliable and consistent
key-value store
— Give you taste of challenges of building a distributed system
— Why hard?
» Nodes can fail: may lose data, render service unavailable
» Network can get congested or partitioned: slow/unavailable service
» Scale: a p2p network can consists of million of nodes

11/28 lon Stoica CS162 ©UCB Fall 2012 Lec 25.54

