
CS 162 Spring 2013 Midterm Exam March 13, 2013

 Page 4/10

2. (25 points) Synchronization primitives: Consider a machine with hardware support for
a single thread synchronization primitive, called Compare-And-Swap (CAS).
Compare-and-swap is an atomic operation, provided by the hardware, with the
following pseudocode:

int compare_and_swap(int *a, int old, int new) {
 if (*a == old) {

*a = new;
return 1;

 } else {
return 0;

 }
}

Your first task is to implement the code for a simple spinlock using compare-and-
swap. You are not allowed to assume any other hardware or kernel support exists
(e.g., disabling interrupts). You may assume your spinlock will be used correctly (i.e.,
no double release or release by a thread not holding the lock)

a. (3 points) Fill in the code for the spinlock data structure.

struct spinlock { /* Fill in */

}

b. (4 points) Fill in the code for the acquire data function.
void acquire(struct spinlock *lock) { /* Fill in */

}

CS 162 Spring 2013 Midterm Exam March 13, 2013

 Page 5/10

c. (4 points) Fill in the code for the release data function.
void release(struct spinlock *lock) { /* Fill in */

}

After completing your implementation, you realize that using a spinlock is inefficient
for applications that may hold the lock for a long time. You consider using the
following two primitives to implement more efficient locks: atomic_sleep and
wake.

atomic_sleep is an atomic operation, provided by the hardware, with the
following pseudocode:

void atomic_sleep(struct *lock, int *val1, int val2){
val1 = val2; / set val1 to val2 */
enqueue(lock); /* put current thread on a
 lock’s wait queue*/
sleep(); /* put current thread to sleep */

}

wake is non-atomic with the following pseudocode:

void wake(struct lock *lock){
dequeue(); /* remove a thread (if any) from lock’s
 wait queue and add it to the
 scheduler’s ready queue */

}

Your second task is to reimplement your lock code more efficiently using
atomic_sleep and wake. You may use Compare-And-Swap if you want. You are
not allowed to assume any other hardware or kernel support exists (e.g., disabling
interrupts).

CS 162 Spring 2013 Midterm Exam March 13, 2013

 Page 6/10

d. (4 points) Fill in the code for the new lock data structure.
struct lock { /* Fill in */

}

e. (5 points) Fill in the code for the new acquire data function.
void acquire(struct lock *lock) { /* Fill in */

}

}

f. (5 points) Fill in the code for the new release data function.

void release(struct lock *lock) { /* Fill in */

}

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 6/14

3. (12 points) Synchronization: A common parallel programming pattern is to perform
processing in a sequence of parallel stages: all threads work independently during each
stage, but they must synchronize at the end of each stage at a synchronization point called
a barrier. If a thread reaches the barrier before all other threads have arrived, it waits.
When all threads reach the barrier, they are notified and can begin the execution on the
next phase of the computation.

Example:
while (true) {

 Compute stuff;
 BARRIER();
 Read other threads results;
 }

a) (4 points) The following implementation of Barrier is incomplete and has two

lines missing. Fill in the missing lines so that the Barrier works according to the
prior specifications.

class Barrier() {
 int numWaiting = 0; // Initially, no one at barrier
 int numExpected = 0; // Initially, no one expected
 Lock L = new Lock();
 ConditionVar CV = new ConditionVar();

 void threadCreated() {
 L.acquire();
 numExpected++;
 L.release();
 }
 void enterBarrier() {
 L.acquire();
 numWaiting++;
 if (numExpected == numWaiting) { // If we are the last
 numWaiting = 0; // Reset barrier and wake threads

 // Fill me in
 } else { // Else, put me to sleep

 // Fill me in
 }
 L.release() ;
 }
}

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 7/14

b) (5 points) Now, let us use Barrier in a parallel algorithm. Consider the linked

list below:

 Node 4 Node 3 Node 2 Node 1

In our parallel algorithm, there are four threads (Thread 1, Thread 2, Thread 3, Thread 4).
Each thread has its own instance variable node, and all threads share the class variable
barrier. Initially, Thread 1’s node references Node 1, Thread 2’s node references Node 2,
Thread 3’s node references Node 3, and Thread 4’s node references Node 4.

In the initialization steps, barrier.threadCreated() is called once for each thread
created, so we have barrier.numExpected == 4 as a starting condition.

Once all four threads are initialized, each thread calls its run() method. The run()
method is identical for all threads:

void run() {
 boolean should_print = true;
 while (true) {
 if (node.next != null) {
 node.updated_value = node.value +
 node.next.value;
 node.updated_next = node.next.next;
 } else if (should_print) {
 System.out.println(node.value);
 should_print = false;
 }
 barrier.enterBarrier();
 node.value = node.updated_value;
 node.next = node.updated_next;
 barrier.enterBarrier();
 }
}

List all the values that are printed to stdout along with the thread that prints each
value. For example, “thread 1 prints 777”.

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 8/14

c) (3 points) In an attempt to speed-up the parallel algorithm from the previous part
(2c), you notice that the line barrier.enterBarrier() occurs twice in run()’s while
loop. Can one of these two calls to barrier.enterBarrier() be removed while
guaranteeing that the output of the previous part (2c) remains unchanged? If your
answer is “yes”, specify whether you would remove the first or second occurrence
of barrier.enterBarrier().

CS 162 Spring 2004 Midterm Exam March 18, 2004

 Page 7/10

4. (22 points) Deadlock:

A restaurant would like to serve four dinner parties, P1 through P4. The restaurant has
a total of 8 plates and 12 bowls. Assume that each group of diners will stop eating and
wait for the waiter to bring a requested item (plate or bowl) to the table when it is
required. Assume that the diners don't mind waiting. The maximum request and
current allocation tables are shown as follows:

Maximum
Request

Plates Bowls

P1 7 7
P2 6 10
P3 1 2
P4 2 4

Current
Allocation

Plates Bowls

P1 2 3
P2 3 5
P3 0 1
P4 1 2

a. (4 points) Determine the Need Matrix for plates and bowls.
Need Plates Bowls

P1
P2
P3
P4

b. (7 points) Will the restaurant be able to feed all four parties successfully?
Clearly explain your answer – specifically, why no or why/how there is a safe
serving order.

CS 162 Spring 2004 Midterm Exam March 18, 2004

 Page 8/10

4. (continued) Deadlock
c. (11 points) Assume a new dinner party, P5, comes to the restaurant at this

time. Their maximum needs are 5 plates and 3 bowls. Initially, the waiter
brings 2 plates to them. In order to be able to feed all five parties successfully,
the restaurant needs more plates.
i. (2 points) Determine the new Need Matrix for plates and bowls.

Need Plates Bowls

P1
P2
P3
P4
P5

ii. (6 points) At least how many plates would the restaurant need to add?

iii. (3 points) Show a safe serving sequence.

Student Name: _____________________________________ SID: _____________________

CS 162 Midterm Page 3 March 9, 2011; 4:00-5:30 PM

Question 2. Deadlock (15 points)

Consider a system with four processes P1, P2, P3, and P4, and two resources, R1, and R2, respectively.
Each resource has two instances. Furthermore:

- P1 allocates an instance of R2, and requests an instance of R1;
- P2 allocates an instance of R1, and doesn’t need any other resource;
- P3 allocates an instance of R1 and requires an instance of R2;
- P4 allocates an instance of R2, and doesn’t need any other resource.

(5 points each question)

(a) Draw the resource allocation graph.

(b) Is there a cycle in the graph? If yes name it.

(c) Is the system in deadlock? If yes, explain why. If not, give a possible sequence of executions after
which every process completes.

Student Name: _____________________________________ SID: _____________________

CS 162 Midterm Page 6 March 9, 2011; 4:00-5:30 PM

Question 4. Scheduling (20 points)

Consider three threads that arrive at the same time and they are enqueued in the ready queue in the order
T1, T2, T3.

Thread T1 runs a four-iteration loop, with each iteration taking one time unit. At the end of each iteration,
T1 calls yield; as a result, T1 is placed at the end of the ready queue. Threads T2 and T3 both run a two-
iteration loop, which each iteration taking three time units. At the end of first iteration, T2 synchronizes
with T3, i.e., T2 cannot start the second iteration before T3 finishes the first iteration, and vice versa. While
waiting, T2 (T3) is placed in the waiting queue; once T3 (T2) finishes its first iteration, T2 (T3) is placed at
the end of the ready queue. Each process exits after finishing its loop.

Assume the system has one CPU. On the timeline below, show how the threads are scheduled using two
scheduling policies (FCFS and Round Robin). For each unit of time, indicate the state of the thread by
writing “R” if the thread is running, “A” if the thread is in the ready queue, and “W” if the thread is in the
waiting queue (e.g., T2 waits for T3 to finish the first iteration, before T2 can run its second iteration).

(a) (6 points) FCFS (No-preemption) FCFS always selects the thread at the head of the ready queue. A
thread only stops running when it calls yield or waits to synchronize with another thread. What is the
average completion time? (Each column corresponds to one time unit. The first column is already filled in.)

T1 R
T2 A
T3 A

(b) (6 points) Round Robin (time quantum = 2 units) When a thread is preempted it is moved at the end
of the ready queue. What is average completion time?

T1 R
T2 A
T3 A

(c) (8 points) Assume there are two processors P1 and P2 in the system. The scheduler follows the policy
of FCFS with no preemption. When the scheduler assigns tasks, always assign a task to P1 before
assigning to P2. Instead of using “R” to mark running, use “P1” or “P2” to indicate where the task runs.
What is the average completion time?

T1 P1
T2 P2
T3 A

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 9/14

4. (24 points total) CPU scheduling. Consider the following single-threaded processes,
arrival times, and CPU processing requirements:

Process ID (PID) Arrival Time Processing Time
1 0 6
2 2 4
3 3 5
4 6 2

a) (12 points): For each scheduling algorithm, fill in the table with the ID of the

process that is running on the CPU. Each row corresponds to a time unit.
● For time slice-based algorithms, assume one unit time slice.
● When a process arrives it is immediately eligible for scheduling, e.g.,

process 2 that arrives at time 2 can be scheduled during time unit 2.
● If a process is preempted, it is added at the tail of the ready queue.

Time FIFO RR SJF

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 10/14

b) (6 points): Calculate the response times of individual processes for each of the
scheduling algorithms. The response time is defined as the time a process takes to
complete after it arrives.

 PID 1 PID 2 PID 3 PID 4

FIFO

RR

SJF

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 11/14

c) (6 points) Consider same processes and arrival times, but assume now a processor
with two CPUs. Assume CPU 0 is busy for the first two time units. For each
scheduling algorithm, fill in the table with the ID of the process that is running on
each CPU.

• For any non-time slice-based algorithm, assume that once a process starts
running on a CPU, it keeps running on the same CPU till the end.

● If both CPUs are free, assume CPU 0 is allocated first.

Time CPU # FIFO RR SJF
0 0

 1

1 0

 1

2 0

 1

3 0

 1

4 0

 1

5 0

 1

6 0

 1

7 0

 1

8 0

 1

9 0

 1

10 0

 1

CS 162 Spring 2013 Midterm Exam March 13, 2013

 Page 10/10

5. (15 points total) Scheduling. Consider the following processes, arrival times, and CPU

processing requirements:
Process Name Arrival Time Processing Time

1 0 4
2 2 3
3 5 3
4 6 2

For each scheduling algorithm, fill in the table with the process that is running on the
CPU (for timeslice-based algorithms, assume a 1 unit timeslice). For RR and SRTF,
assume that an arriving thread is run at the beginning of its arrival time, if the scheduling
policy allows it. Also, assume that the currently running thread is not in the ready queue
while it is running. The turnaround time is defined as the time a process takes to complete
after it arrives.

Time FIFO RR SRTF
0

1 1 1

1

2

3

4

5

6

7

8

9

10

11

Average
Turnaround
Time

CS 162 Spring 2004 Midterm Exam March 18, 2004

 Page 9/10

5. (18 points) Paging:
Suppose you have a system with 32-bit pointers and 4 megabytes of physical memory
that is partitioned into 8192-byte pages. The system uses an Inverted Page Table
(IPT). Assume that there is no page sharing between processes.
a. (8 points) Describe what page table entries should look like. Specifically, how

many bits should be in each page table entry, and what are they for? Also, how
many page table entries should there be in the page table?

b. (5 points) Describe how an IPT is used to translate a virtual address into a
physical address.

c. (3 points) How can you make an IPT more efficient? Explain your solution and

how it works in detail.

d. (2 points) What effect, if any, does your solution in part (c) have on what happens

on a context switch?

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 13/20

Problem 4: Virtual Memory [20 pts]
Consider a multi-level memory management scheme with the following format for virtual
addresses:

Virtual Page #
(10 bits)

Virtual Page #
(10 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(20 bits)

Offset
(12 bits)

Page table entries (PTE) are 32 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0

Large
Page

D
irty

A
ccessed

N
ocache

W
rite

Throu gh

U
ser

W
riteable

V
alid

Here, “Valid” means that a translation is valid, “Writeable” means that the page is writeable, “User”
means that the page is accessible by the User (rather than only by the Kernel). Note: the phrase
“page table” in the following questions means the multi-level data structure that maps virtual
addresses to physical addresses.
Problem 4a[2pts]: How big is a page? Explain.

Problem 4b[2pts]: Suppose that we want an address space with one physical page at the top of the
address space and one physical page at the bottom of the address space. How big would the page
table be (in bytes)? Explain.

Problem 4c[2pts]: What is the maximum size of a page table (in bytes) for this scheme? Explain.

Problem 4d[2pts]: How big would each entry of a fully-associative TLB be for this management
scheme? Explain.

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 14/20

Problem 4e[2pts]: Sketch the format of the page-table for the multi-level virtual memory
management scheme of (4a). Illustrate the process of resolving an address as well as possible.

Problem 4f[10pts]: Assume the memory translation scheme from (4a). Use the Physical Memory
table given on the next page to predict what will happen with the following load/store instructions.
Assume that the base table pointer for the current user level process is 0x00200000.

Addresses are virtual. The return value for a load is an 8-bit data value or an error, while the return
value for a store is either “ok” or an error. Possible errors are: invalid, read-only, kernel-only.
Hint: Don’t forget that Hexidecimal digits contain 4 bits!

Instruction Result Instruction Result
Load

[0x00001047] 0x50 Store
[0x02001345]

Store
[0x00C07665] ok Load

[0xFF80078F]

Store
[0x00C005FF]

ERROR:
read-only Load

[0xFFFFF005]

Load
[0x00003012] Test-And-Set

[0xFFFFF006]

CS 162 Fall 2009 Midterm I October 19th, 2009

 Page 15/20

Physical Memory [All Values are in Hexidecimal]
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
00000010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
00001010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00001020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
00001030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
00001040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
00002030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
00002040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
00002050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
00004000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79
00004010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
00004020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
00100000 00 00 10 65 00 00 20 67 00 00 30 00 00 00 40 07
00100010 00 00 50 03 00 00 00 00 00 00 00 00 00 00 00 00

…
00103000 11 22 00 05 55 66 77 88 99 AA BB CC DD EE FF 00
00103010 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 67

…
001FE000 04 15 00 00 48 59 70 7B 8C 9D AE BF D0 E1 F2 03
001FE010 10 15 00 67 10 15 10 67 10 15 20 67 10 15 30 67

…
001FF000 00 00 00 00 00 00 00 65 00 00 10 67 00 00 00 00
001FF010 00 00 20 67 00 00 30 67 00 00 40 65 00 00 50 07

…
001FFFF0 00 00 00 00 00 00 00 00 10 00 00 67 00 10 30 65

…
00200000 00 10 00 07 00 10 10 07 00 10 20 07 00 10 30 07
00200010 00 10 40 07 00 10 50 07 00 10 60 07 00 10 70 07
00200020 00 10 00 07 00 00 00 00 00 00 00 00 00 00 00 00

…
00200FF0 00 00 00 00 00 00 00 00 00 1F E0 07 00 1F F0 07

…

CS 162 Spring 2013 Midterm Exam March 13, 2013

 Page 7/10

3. (17 points total) Memory management:

a. (7 points) Consider a memory system with a cache access time of 10ns and a
memory access time of 200ns, including the time to check the cache. What hit rate
H would we need in order to achieve an effective access time 10% greater than
the cache access time? (Symbolic and/or fractional answers are OK)

b. (10 points) Suppose you have a 47-bit virtual address space with a page size of 16
KB and that page table entry takes 8 bytes. How many levels of page tables would
be required to map the virtual address space if every page table is required to fit
into a single page? Be explicit in your explanation and show how a virtual address
is structured.

Student Name: _____________________________________ SID: _____________________

CS 162 Midterm Page 8 March 9, 2011; 4:00-5:30 PM

Question 6. Caches (20 points) A tiny system has 1-byte addresses and a 2-way associative cache with four
entries. Each block in the cache holds two bytes. The cache controller uses the LRU policy for evicting
from cache when both rows with the same “index” are full.

(a) (4 points) Use the figure below to indicate the number of bits in each field.

(b) (6 points) Assume the following access sequence to the memory: 0xff, 0x22, 0x27, 0x24, 0x27, 0xff,
0xf0, 0x24, 0x27, 0x22. Fill in the following table with the addresses whose content is in the cache.
Initially assume the cache is empty. The first entry (i.e., the one corresponding to address 0xff) is filled for
you.

 0xff 0x22 0x27 0x24 0x27 0xff 0xf0 0x24 0x27 0x22

Index: 0 Set
1

Index: 1 0xfe,
0xff

Index: 0 Set
2

Index: 1

(c) (4 points) How many cache misses did the access sequence at point (b) cause? What is the hit rate?

(d) (3 points) How many compulsory misses (i.e., misses which could never be avoided) did the access
pattern at point (b) cause?

(e) (3 points) Assuming the cache access time is 10ns, and that the miss time is 100ns (this includes the
time to check the cache), what is the average access time assuming the access pattern at point (b)?
(
(
(
(
(
(
(
(
(

CS 162 Spring 2012 Midterm Exam March 7, 2012

 Page 9/10

6. (10 points total) Caching: Assume a computer system employing a cache, where the

access time to the main memory is 100 ns, and the access time to the cache is 20ns.

a. (2 points) Assume the cache hit rate is 95%. What is the average access time?

b. (2 points) Assume the system implements virtual memory using a two-level page

table with no TLB, and assume the CPU loads a word X from main memory.
Assume the cache hit rate for the page entries as well as for the data in memory is
95%. What is the average time it takes to load X?

c. (3 points) Assume the same setting as in point (b), but now assume that page
translation is cached in the TLB (the TLB hit rate is 98%), and the access time to
the TLB is 16 ns. What is the average access time to X?

d. (3 points) Assume we increase the cache size. Is it possible that this increase to

lead to a decrease in the cache hit rate? Use no more than three sentences to
explain your answer.

