CS162
Operating Systems and
Systems Programming

Key Value Storage Systems

November 3, 2014
lon Stoica

Who am 1?

- lon Stoica
— E-mail: istoica@cs.berkeley.edu
— Web: http://www.cs.berkeley.edu/~istoica/

- Research focus
— Cloud computing (Mesos, Spark, Tachyon)
» Co-director of AMPLab
— Past work

» Network architectures (i3, Declarative Networks, ...)
» P2P (Chord, OpenDHT)

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Key Value Storage

- Handle huge volumes of data, e.g., PBs
— Store (key, value) tuples

- Simple interface
— put(key, value); // insert/write “value” associated with “key”

—value = get(key); // get/read data associated with “key”

« Used sometimes as a simpler but more scalable
“database”

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Key Values: Examples
- Amazon: amazon

— Key: customerlD
— Value: customer profile (e.g., buying history, credit card, ..)

- Facebook, Twitter: lij'
— Key: UserID

— Value: user profile (e.g., postina history, photos, friends, ...)

» iCloud/iTunes: Q @

— Key: Movie/song name
— Value: Movie, Song

11/3/2014 lon Stoica CS162 ©UCB Fall 2014 4

Examples

- Amazon
— DynamoDB: internal key value store used to power Amazon.com

(shopping cart)
— Simple Storage System (S3)
- BigTable/HBase/Hypertable: distributed, scalable data storage

- Cassandra: “distributed data management system” (developed
by Facebook)

- Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

- eDonkey/eMule: peer-to-peer sharing system

11/3/2014 lon Stoica CS162 ©UCB Fall 2014 5

Key Value Store

- Also called Distributed Hash Tables (DHT)

- Main idea: partition set of key-values across many
machines

key, value

E &

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Challenges

E % ¢ ©

Fault Tolerance: handle machine failures without losing
data and without degradation in performance

Scalability:
— Need to scale to thousands of machines
— Need to allow easy addition of new machines

Consistency: maintain data consistency in face of node
failures and message losses
Heterogeneity (if deployed as peer-to-peer systems):

— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Key Questions

- put(key, value): where do you store a new (key, value)
tuple?

- get(key): where is the value associated with a given
“key” stored?

- And, do the above while providing
— Fault Tolerance
— Scalability
— Consistency

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Directory-Based Architecture

- Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

put(K14, V14) -------——o > 5 | N2
: 14 | N3
9 :
&0 [KI05INGD
&/
g ¥
K5 V5 Ki4d [Viad K105]Vi05
N, N, N, Ng,

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Directory-Based Architecture

- Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory

get(K1 4) ----------------- > 5 N2
V14 <« ___ - 14 | N3

>/ K105/ N50
.,\& /'/ ’y/l
OQ)’,'I A/,I
‘ /
Kc | V5 K14 | Vi4 K105[Vi05
N, N, N Nso

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Directory-Based Architecture

- Having the master relay the requests = recursive query
- Another method: iterative query (this slide)
— Return node to requester and let requester contact node

Master/Directory

put(K14, V14) ---------ooe > 5 | N2
N3 D e i 14 N3

K105[N50

KS | V5 K14 | V14 K105|V105
N, N, N N5,

11/3/2014 lon Stoica CS162 ©UCB Fall 2014 11

Directory-Based Architecture

- Having the master relay the requests = recursive query
- Another method: iterative query
— Return node to requester and let requester contact node

Master/Directory

get(K14) ----------- . N

_______________ 5 [ND
N3 <mmmmmmomoroocooe 12 N3
Vg " [KI0BINB0

v. \\9@’/4'

Y

K5 V5 Ki4 | Vid K105[Vi05

N, N, N, N,

11/3/2014 lon Stoica CS162 ©UCB Fall 2014 12

Discussion: lterative vs. Recursive Query

Master/Directory Master/Directory
o get(K14)====------ >
get(K14)- ________ > KA N3] N34 —————————— K14 N
A e V14 ~
9// /‘ v N \9\@//
R I gll ! X \f’fq/
6)\' / A/l L \\ \\
ecursive 3/ lterative
K14 V1 RT4[V1
N1 N2 N3 N50 N1 N2 N3 N50
* Recursive Query:
— Advantages:

» Faster, as typically master/directory closer to nodes

» Easier to maintain consistency, as master/directory can
serialize puts()/gets()

— Disadvantages: scalability bottleneck, as all “Values” go through
master/directory

- lterative Query
— Advantages: more scalable

— Disadvantages: slower, harder to enforce data consistency
11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Fault Tolerance

* Replicate value on several nodes

Usually, place replicas on different racks in a datacenter
to guard against rack failures

Master/Directory

put(K14, V14) -------omoom > K [N2
N1, N8 <------eo K14 | N1 N3

K105/ N50

oy
\\1‘(/\»7
put(K14 V14) V74)

K14 | V14 KS | V5 K14 | V14 K105|V105
N, N, N N5,

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

Fault Tolerance

- Again, we can have
— Recursive replication (previous slide)
— lterative replication (this slide)

Master/Directory

put(K14, V14) ------oomoee > KE TND
N1, N3 <-----oomoomeo K14 [N1,N3
% \\\ -
NG p(”//r K105[N50
A e
/ R/
§' \5’)\
Q» T~ a
Ki4| Vi4 K5 [V5 Ki4| Vi4 K105[V105
N, N, N Nso
11/3/2014 lon Stoica CS162 ©UCB Fall 2014

15

Fault Tolerance

- Or we can use recursive query and iterative

replication...
Master/Directory
put(K14, V14) -------omoom > K [N2
E [K14 [N1 N3
- " [K105IN50
U\ \(\ A” \”_‘_A.)— (e J\D« ‘Q\A\
. —_,‘? ——————— Q\)\%{\/
K14 | V14 K5 | V5 K14 | V14 K105{V105
N, N, N, Ng,

11/3/2014 lon Stoica CS162 ©UCB Fall 2014 16

Scalability

- Storage: use more nodes

- Number of requests:

— Can serve requests from all nodes on which a value is
stored in parallel

— Master can replicate a popular value on more nodes

- Master/directory scalabllity:
— Replicate it

— Partition it, so different keys are served by different
masters/directories

» How do you partition?

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

17

Scalability: Load Balancing

* Directory keeps track of the storage availability at each
node

— Preferentially insert new values on nodes with more
storage available

- What happens when a new node is added?
— Cannot insert only new values on new node. Why?

— Move values from the heavy loaded nodes to the new
node

- What happens when a node fails?
— Need to replicate values from fail node to other nodes

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

18

Consistency

Need to make sure that a value is replicated correctly

How do you know a value has been replicated on
every node?

— Wait for acknowledgements from every node

What happens if a node fails during replication?
— Pick another node and try again

What happens if a node is slow?
— Slow down the entire put()? Pick another node?

In general, with multiple replicas
— Slow puts and fast gets

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

19

11/3/2014

Consistency

(cont’d)

- |f concurrent updates (i.e., puts to same key) may need

Master/Directory
put(K14, V14’) ~.__

IR K5 [N2
------- . K14 | N1,N3

K105

put(K14, V14”)

Ki4

K5

V5

N, N,

N3
lon Stoica CS162 ©UCB Fall 2014

to make sure that updates happen in the same order

put(K14, V14’) and put(K14,
V14”) reach N1 and N3 in
reverse order

What does get(K14) return?
* Undefined!

K105

20

Consistency (cont’d)

- Large variety of consistency models:

— Atomic consistency (linearizability): reads/writes (gets/puts)
to replicas appear as if there was a single underlying replica
(single system image)

» Think “one updated at a time”
» Transactions

— Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency; used by many
systems in practice

— And many others: causal consistency, sequential
consistency, strong consistency, ...
11/3/2014 lon Stoica CS162 ©UCB Fall 2014

21

Quorum Consensus

 Improve put() and get() operation performance

- Define a replica set of size N

* put() waits for acknowledgements from at least W
replicas

- get() waits for responses from at least R replicas
- W+R >N

- Why does it work?
— There is at least one node that contains the update

* Why you may use W+R > N+1?

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

22

Quorum Consensus Example

« N=3, W=2, R=2
- Replica set for K14: {N1, N2, N4}
- Assume put() on N3 fails

Y g:: > Y\
, - N2
R’ . \Z
Ng¥ < R
> T A N
{5?9 O\E X N N2
,\\// ?:/ | \\ \\)
O , D! \ Vs
Q’/ // Q_: _/
/// /l * \\
. X)
K14 | V14 K14 [V14
N, N, N, N,
11/3/2014 lon Stoica CS162 ©UCB Fall 2014

23

11/3/2014

Quorum Consensus Example

Now, issuing get() to any two nodes out of three will return

the answer

@& iﬁ
R EgE
> =
¥’ ¢
K14 [ViZ K14 [V14
N, N, N, N,

lon Stoica CS162 ©UCB Fall 2014 24

Scaling Up Directory

 Challenge:

— Directory contains a number of entries equal to number
of (key, value) tuples in the system

— Can be tens or hundreds of billions of entries in the
system!

- Solution: consistent hashing

» Associate to each node a unique id in an uni-
dimensional space 0..2™M-1

— Partition this space across m machines
— Assume keys are in same uni-dimensional space

— Each (Key, Value) is stored at the node with the smallest
ID larger than Key

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

25

Key to Node Mapping Example

m =8 - ID space: 0..63
Node 8 maps keys [5,8]

Node 15 maps keys
[9,15]

Node 20 maps keys [16 14 [Vi4
20]
Node 4 maps keys [59,
4] \
ﬁ 44 20

11/3/2014

’ ﬁ 63 0

58

»
\

35 39

lon Stoica CS162 ©UCB Fall 2014

\ /’
N /
N Ve

A
N v
~ ,
S //
N 7’
\\ -
D —| P
-
— L -
= 1 -
I i ﬁ «---7
=~ =)

26

Conclusions: Key Value Store

* Very large scale storage systems
» Two operations

— put(key, value)

— value = get(key)
+ Challenges

— Fault Tolerance - replication

— Scalability - serve get()’s in parallel; replicate/cache hot
tuples

— Consistency - quorum consensus to improve put()
performance

11/3/2014 lon Stoica CS162 ©UCB Fall 2014

27

