
CS162  
Operating Systems and 
Systems Programming 

 
Key Value Storage Systems"

November 3, 2014!
Ion Stoica!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 2!

Who am I?"
•  Ion Stoica!

– E-mail: istoica@cs.berkeley.edu!
– Web: http://www.cs.berkeley.edu/~istoica/!

!
•  Research focus!

– Cloud computing (Mesos, Spark, Tachyon)!
» Co-director of AMPLab!

– Past work!
» Network architectures (i3, Declarative Networks, …)!
»  P2P (Chord, OpenDHT)!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 3!

Key Value Storage"

•  Handle huge volumes of data, e.g., PBs!
– Store (key, value) tuples!

•  Simple interface!
– put(key, value); // insert/write “value” associated with “key”!
– value = get(key); // get/read data associated with “key”!

•  Used sometimes as a simpler but more scalable
“database”!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 4!

•  Amazon:!
– Key: customerID!
– Value: customer profile (e.g., buying history, credit card, ..)!

•  Facebook, Twitter:!
– Key: UserID !
– Value: user profile (e.g., posting history, photos, friends, …)!

! ! !!
•  iCloud/iTunes:!

– Key: Movie/song name!
– Value: Movie, Song!

Key Values: Examples "

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 5!

Examples"
•  Amazon"

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)!

– Simple Storage System (S3)!

•  BigTable/HBase/Hypertable: distributed, scalable data storage!

•  Cassandra: “distributed data management system” (developed
by Facebook)!

•  Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects) !

•  eDonkey/eMule: peer-to-peer sharing system!

•  …!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 6!

Key Value Store"
•  Also called Distributed Hash Tables (DHT)!
•  Main idea: partition set of key-values across many

machines!
!

!
!
!

key, value

…"

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 7!

Challenges"

•  Fault Tolerance: handle machine failures without losing
data and without degradation in performance!

•  Scalability: "
– Need to scale to thousands of machines !
– Need to allow easy addition of new machines!

•  Consistency: maintain data consistency in face of node
failures and message losses !

•  Heterogeneity (if deployed as peer-to-peer systems):!
– Latency: 1ms to 1000ms!
– Bandwidth: 32Kb/s to 100Mb/s!

…"

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 8!

Key Questions"
•  put(key, value): where do you store a new (key, value)

tuple?"
•  get(key): where is the value associated with a given

“key” stored?!

•  And, do the above while providing !
– Fault Tolerance!
– Scalability!
– Consistency!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 9!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

put(K14, V14)!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 10!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

get(K14)!
V14!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 11!

Directory-Based Architecture"
•  Having the master relay the requests à recursive query"
•  Another method: iterative query (this slide)!

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
put(K14, V14)!

N3!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 12!

Directory-Based Architecture"
•  Having the master relay the requests à recursive query"
•  Another method: iterative query"

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
get(K14)!

V14!
N3!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 13!

Discussion: Iterative vs. Recursive Query"

•  Recursive Query:!
–  Advantages: !

»  Faster, as typically master/directory closer to nodes!
»  Easier to maintain consistency, as master/directory can

serialize puts()/gets()!
– Disadvantages: scalability bottleneck, as all “Values” go through

master/directory!
•  Iterative Query!

–  Advantages: more scalable!
– Disadvantages: slower, harder to enforce data consistency!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!

get(K14)!
V14!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!
get(K14)!

V14!
N3!

Recursive! Iterative!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 14!

Fault Tolerance"
•  Replicate value on several nodes!
•  Usually, place replicas on different racks in a datacenter

to guard against rack failures!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

N1, N3!

K14! V14!

put(K14, V14)!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 15!

Fault Tolerance"
•  Again, we can have !

– Recursive replication (previous slide)!
–  Iterative replication (this slide)!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

N1, N3!

K14! V14!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 16!

Fault Tolerance"
•  Or we can use recursive query and iterative

replication…!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

K14! V14!

put(K14, V14)!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 17!

Scalability"
•  Storage: use more nodes!

•  Number of requests: !
– Can serve requests from all nodes on which a value is

stored in parallel!
– Master can replicate a popular value on more nodes!

•  Master/directory scalability:!
– Replicate it!
– Partition it, so different keys are served by different

masters/directories!
» How do you partition? !

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 18!

Scalability: Load Balancing"
•  Directory keeps track of the storage availability at each

node!
– Preferentially insert new values on nodes with more

storage available!

•  What happens when a new node is added?!
– Cannot insert only new values on new node. Why?!
– Move values from the heavy loaded nodes to the new

node!

•  What happens when a node fails?!
– Need to replicate values from fail node to other nodes!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 19!

Consistency"
•  Need to make sure that a value is replicated correctly!

•  How do you know a value has been replicated on
every node? !

– Wait for acknowledgements from every node!

•  What happens if a node fails during replication?!
– Pick another node and try again!

•  What happens if a node is slow?!
– Slow down the entire put()? Pick another node?!

•  In general, with multiple replicas!
– Slow puts and fast gets!
!
!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 20!

Consistency (cont’d)"
•  If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order !

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14’)!

put(K14, V14’)!

K14! V14!

put(K14, V14’’)!

put(K14, V14’')!

K14! V14’’!K14! V14’!

•  put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order!

•  What does get(K14) return?!
•  Undefined!!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 21!

Consistency (cont’d)"
•  Large variety of consistency models:!

– Atomic consistency (linearizability): reads/writes (gets/puts)
to replicas appear as if there was a single underlying replica
(single system image)!

»  Think “one updated at a time”!
»  Transactions!

– Eventual consistency: given enough time all updates will
propagate through the system!

» One of the weakest form of consistency; used by many
systems in practice!

– And many others: causal consistency, sequential
consistency, strong consistency, …!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 22!

Quorum Consensus"
•  Improve put() and get() operation performance!

•  Define a replica set of size N!
•  put() waits for acknowledgements from at least W

replicas!
•  get() waits for responses from at least R replicas!
•  W+R > N!

•  Why does it work?!
– There is at least one node that contains the update!

•  Why you may use W+R > N+1? !

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 23!

Quorum Consensus Example"
•  N=3, W=2, R=2!
•  Replica set for K14: {N1, N2, N4}!
•  Assume put() on N3 fails!

N1! N2! N3! N4!

K14! V14!K14! V14!

pu
t(K

14
, V

14
)!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 24!

Quorum Consensus Example"
•  Now, issuing get() to any two nodes out of three will return

the answer!
!

N1! N2! N3! N4!

K14! V14!K14! V14!
get(K14)!

nill!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 25!

Scaling Up Directory"
•  Challenge:!

– Directory contains a number of entries equal to number
of (key, value) tuples in the system!

– Can be tens or hundreds of billions of entries in the
system!!

•  Solution: consistent hashing"
•  Associate to each node a unique id in an uni-

dimensional space 0..2m-1!
– Partition this space across m machines!
– Assume keys are in same uni-dimensional space!
– Each (Key, Value) is stored at the node with the smallest

ID larger than Key!

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 26!

Key to Node Mapping Example"

•  m = 8 à ID space: 0..63 !
•  Node 8 maps keys [5,8]!
•  Node 15 maps keys

[9,15]!
•  Node 20 maps keys [16,

20]!
•  …!
•  Node 4 maps keys [59,

4]!

4

20

32 35

8

15

44

58

14! V14!

63 0

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 27!

Conclusions: Key Value Store"

•  Very large scale storage systems!
•  Two operations!

– put(key, value)!
– value = get(key)!

•  Challenges!
– Fault Tolerance à replication!
– Scalability à serve get()’s in parallel; replicate/cache hot

tuples!
– Consistency à quorum consensus to improve put()

performance!

!

