
TCP Flow Control – an illustration of
distributed system thinking

David E. Culler
 CS162 – Operating Systems and Systems Programming

http://cs162.eecs.berkeley.edu/
Lecture 33

Nov 17, 2014

Read: TCP ’88

Recall: Connecting API to Protocol

11/12/14 UCB CS162 Fa14 L32!
2

Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

Accept connection

read request

Connection Socket

write request

write response

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!
ACK, Ack = y + 1!

tim
e!

Recall: Stop & Wait with Errors!
•  If a loss wait for a retransmission timeout and

retransmit!
•  How do you pick the timeout?!

ACK 1

Time

Sender Receiver
1!

RTT

timeout 1!

11/12/14 UCB CS162 Fa14 L32! 3

Where we are!
•  TCP: Reliable Byte Stream!

–  Open connection (3-way handshaking)!
–  Close connection: no perfect solution; no way for two parties

to agree absolutely in the presence of arbitrary message
losses (Byzantine General’s Problem) !

•  Reliable transmission!
–  Stop&Wait not efficient for links with large capacity, i.e.,

bandwidth-delay product!
–  Sliding window more efficient but more complex!

•  Flow Control!
–  OS on sender and receiver manage buffers!
–  Sending rate adjusted according to acks and losses!
–  Receiver drops to slow sender on over-run!
!

11/12/14 UCB CS162 Fa14 L32! 4

Recap: Sliding Window!
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ACK’d packet of sender without
gap; then window of sender = {A+1, A+2, …, A+n}  

! !!
•  Sender can send packets in its window 

! !!
•  Let B be the last received packet without gap by

receiver, then window of receiver = {B+1,…, B+n}  
! !!

•  Receiver can accept out of sequence, if in window!

11/12/14 UCB CS162 Fa14 L32! 5

Sliding Window w/o Errors!
•  Throughput = W*packet_size/RTT

Time!

Window size (W) = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Unacked packets !
in sender’s window!

Out-o-seq packets!
in receiver’s window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

11/12/14 UCB CS162 Fa14 L32! 6

Example: Sliding Window w/o Errors!
•  Assume !

–  Link capacity, C = 1Gbps!
–  Latency between end-hosts, RTT = 80ms!
–  packet_length = 1000 bytes !

•  What is the window size W to match link’s capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity) x delay (RTT/2)!

11/12/14 UCB CS162 Fa14 L32! 7

Remember Little’s Law !

Bandwidth-Delay
Product

Sliding Window with Errors!
•  Two approaches!

–  Go-Back-n (GBN)!
–  Selective Repeat (SR)!

•  In the absence of errors they behave identically!

•  Go-Back-n (GBN)!
–  Transmit up to n unacknowledged packets!
–  If timeout for ACK(k), retransmit k, k+1, …!
–  Typically uses NACKs instead of ACKs!

»  Recall, NACK specifies first in-sequence packet missed by
receiver!

11/12/14 UCB CS162 Fa14 L32! 8

GBN Example with Errors!
Window size (W) = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Why doesn’t sender
retransmit packet 4

here?!Assume
packet 4 lost!!

Out-o-seq packets!
in receiver’s window!

NACK 4

NACK 4

11/12/14 UCB CS162 Fa14 L32! 9

Selective Repeat (SR)!
•  Sender: transmit up to n unacknowledged

packets!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing (use
ACKs)!

•  Sender: retransmit packet k !

11/12/14 UCB CS162 Fa14 L32! 10

SR Example with Errors!

Time!

Sender! Receiver!

1!
2!
3!
4!
5!
6!

4!

7!

Window size (W) = 3 packets!
{1}!

{1, 2}!
{1, 2, 3}!
{2, 3, 4}!
{3, 4, 5}!
{4, 5, 6}!

{4,5,6}!

{7}!

Unacked packets !
in sender’s window!

ACK 5

ACK 6

11/12/14 UCB CS162 Fa14 L32! 11

Flow Control!
•  Recall: Flow control ensures a fast sender does not

overwhelm a slow receiver!
•  Example: Producer-consumer with bounded buffer!

–  A buffer between producer and consumer!
–  Producer puts items into buffer as long as buffer not full!
–  Consumer consumes items from buffer!

•  Recall: solutions on one machine using locks, etc.!

Produ-
cer!

Con-
sumer!

buffer!

The Distributed Case

•  Think Globally – Act Locally

11/12/14 UCB CS162 Fa14 L32! 13

Produ-
cer!

Con-
sumer!

buffer!

When the Internet was young …

11/12/14 UCB CS162 Fa14 L32! 14

Van Jacobson’s Concept

•  Packets get “space out” going through bottleneck
•  Sender learns this spacing (rate) from ack timing
•  Loss is due primarily to congestion, including receiver

over-run
•  Start slow and continually increase rate, but …
•  Slow-down in response to loss

11/12/14 UCB CS162 Fa14 L32! 15

TCP Flow Control!
•  TCP: sliding window protocol at byte (not

packet) level!
– Go-back-N: TCP Tahoe, Reno, New Reno!
–  Selective Repeat (SR): TCP Sack !

•  Receiver tells sender how many more bytes it
can receive without overflowing its buffer!

– the AdvertisedWindow!
•  The ACK contains sequence number N of next

byte the receiver expects, !
–  receiver has received all bytes in sequence up to and

including N-1!

TCP Flow Control!

•  TCP/IP implemented by OS (Kernel)!
–  Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet !

•  Need buffers to match … !
–  sending app with sending TCP!
–  receiving TCP with receiving app!

Sending Process! Receiving Process!

OS!
(TCP/IP)! OS!

(TCP/IP)!

TCP Flow Control!

•  Three pairs of producer-consumer’s!
①  sending process à sending TCP!
②  Sending TCP à receiving TCP!
③  receiving TCP à receiving process!

Sending Process! Receiving Process!

TCP layer! TCP layer!

IP layer! IP layer!
OS!

!
!1!

!
!2!

!
!3!

TCP Flow Control!

•  Example assumptions: !
–  Maximum IP packet size = 100 bytes!
–  Size of the receiving buffer (MaxRcvBuf) = 300 bytes!

•  Recall, ack indicates the next expected byte in-
sequence, not the last received byte !

•  Use circular buffers!
!

Sending Process! Receiving Process!

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!

Circular Buffer!
•  Assume!

–  A buffer of size N!
–  A stream of bytes, where bytes have increasing sequence numbers!

»  Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array!

•  Buffer stores at most N consecutive bytes from the stream!
•  Byte k stored at position (k mod N) + 1 in the buffer!

!

H! E! L! L! O! R! L! ! W O!
27! 28! 29! 30! 31! 32! 33! 34! 35! 36!

sequence #!

1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

Circular buffer!
(N = 10)!

buffered data!

(28 mod 10) + 1 = 9 !

E! L!O! R! ! W O! E!L!

(35 mod 10) + 1 = 6 !

start!end!

TCP Flow Control!

•  LastByteWritten: last byte written by sending process !
•  LastByteSent: last byte sent by sender to receiver!
•  LastByteAcked: last ack received by sender from receiver!
•  LastByteRcvd: last byte received by receiver from sender!
•  NextByteExpected: last in-sequence byte expected by

receiver!
•  LastByteRead: last byte read by the receiving process!

LastByteAcked(0)! LastByteSent(0)!

Sending Process!

NextByteExpected(1)!LastByteRcvd(0)!

LastByteRead(0)!

Receiving Process!

LastByteWritten(0)!

TCP Flow Control!
Receiving Process!

NextByteExpected! LastByteRcvd!

LastByteRead!

•  AdvertisedWindow: number of bytes TCP receiver can
receive!

•  SenderWindow: number of bytes TCP sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)!

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)!

MaxRcvBuffer!MaxSendBuffer!

LastByteAcked!

Sending Process!

LastByteWritten!

LastByteSent!

TCP Flow Control!
Receiving Process!

NextByteExpected! LastByteRcvd!

LastByteRead!

•  Still true if receiver missed data….!

•  WriteWindow: number of bytes sending process can write!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)!

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)!

LastByteAcked!

Sending Process!

LastByteWritten!

LastByteSent!

MaxRcvBuffer!MaxSendBuffer!

TCP Flow Control!

•  Sending app sends 350 bytes!
•  Recall: !

–  We assume IP only accepts packets no larger than 100 bytes!
–  MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets!

LastByteAcked(0)! LastByteSent(0)!

Sending Process!

NextByteExpected(1)!LastByteRcvd(0)!

LastByteRead(0)!

Receiving Process!

LastByteWritten(350)!
1, 350!

1, 350!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteRead(0)!

Receiving Process!

LastByteWritten(350)!
101, 350!

LastByteSent(100)!

1,!
100!

NextByteExpected(101)!LastByteRcvd(100)!

1,
100!

Data[1,100]!{[1,100]}!
{[1,100]}!

tim
e!Sender sends first packet (i.e., first 100 bytes) and

receiver gets the packet!

TCP Flow Control!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiver sends ack for 1st packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) !
 = 300 – (100 – 0) = 200!

Ack=101, AdvWin = 200!

1, 350!

LastByteAcked(0)!

Sending Process!

LastByteRead(0)!

Receiving Process!

LastByteWritten(350)!
101, 350!

LastByteSent(100)!

1,!
100!

NextByteExpected(101)!LastByteRcvd(100)!

1,
100!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteRead(0)!

Receiving Process!

LastByteWritten(350)!

LastByteSent(200)! NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

Sender sends 2nd packet (i.e., next 100 bytes) and
receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1,
100!

Ack=101, AdvWin = 200!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteRead(0)!

Receiving Process!

LastByteWritten(350)!

LastByteSent(200)! NextByteExpected(201)!LastByteRcvd(200)!

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100 bytes) and
receiver gets the packet!

Ack=101, AdvWin = 200!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteWritten(350)!

LastByteSent(200)!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiving TCP delivers first 100 bytes to receiving
process!

Ack=101, AdvWin = 200!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

1, !
100!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteWritten(350)!

LastByteSent(200)!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Ack=101, AdvWin = 200!

Ack=201, AdvWin = 200!

Receiver sends ack for 2nd packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) !
 = 300 – (200 – 100) = 200!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteWritten(350)!

LastByteSent(300)!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100 bytes) and the
packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteWritten(350)!

LastByteSent(300)!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) !

 = 300 – (300 – 0) = 0!

1,300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(0)!

Sending Process!

LastByteWritten(350)!

LastByteSent(300)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 1st packet!
•  AdWin = 200!

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(100)!

Sending Process!

LastByteWritten(350)!

LastByteSent(300)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Ack for 1st packet (ack indicates next byte expected by
receiver)!

•  Receiver no longer needs first 100 bytes!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(100)!

Sending Process!

LastByteWritten(350)!

LastByteSent(300)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full!
SndWin = AdvWin – (LastByteSent – LastByteAcked) !

 = 200 – (300 – 100) = 0!

LastByteRead(100)!

Receiving Process!

NextByteExpected(201)!LastByteRcvd(200)!

101,
200!

TCP Flow Control!

LastByteAcked(100)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

LastByteSent(300)! NextByteExpected(201)!LastByteRcvd(200)!

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 2nd packet!
•  AdvWin = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

NextByteExpected(201)!LastByteRcvd(200)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LastByteSent – LastByteAcked) = 100!

101,
200!

LastByteSent(300)!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

NextByteExpected(201)!LastByteRcvd(350)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)!

301,
350!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

NextByteExpected(201)!LastByteRcvd(350)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)!

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

NextByteExpected(201)!LastByteRcvd(350)!

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)!

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

NextByteExpected(201)!LastByteRcvd(350)!

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)!

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

LastByteRcvd(350)!NextByteExpected(351)!

101, 350!201, 350!201,
300!

301,
350!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)!

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 3rd packet since it’s in existing window – won’t
cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

201,
300!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

LastByteRcvd(350)!NextByteExpected(351)!

101, 350!201, 350!201,
300!

301,
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 3rd packet since it’s in existing window – won’t
cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

LastByteRcvd(350)!NextByteExpected(351)!

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)!

Ack=201, AdvWin = 50!{201, 350}!

•  Sender gets 3rd packet and sends Ack for 351!
•  AdvWin = 50!

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

201,
300!

301,
350!

TCP Flow Control!

LastByteAcked(350)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

LastByteRcvd(350)!NextByteExpected(351)!

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)!

Ack=201, AdvWin = 50!{201, 350}!

Sender DONE with sending all bytes! !

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

Discussion!
•  Why not have a huge buffer at the receiver

(memory is cheap!)?

•  Sending window (SndWnd) also depends on
network congestion

–  Congestion control: ensure that a fast sender doesn’t
overwhelm a router in the network

–  discussed in detail in CS168

•  In practice there is another set of buffers in the

protocol stack, at the link layer (i.e., Network
Interface Card)

Summary: Reliability & Flow Control!

•  Flow control: three pairs of producer consumers!
–  Sending process à sending TCP!
–  Sending TCP à receiving TCP!
–  Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new
data the receiver can buffer!

•  SenderWindow: specifies how many more bytes
the sending application can send to the sending
OS!

–  Depends on AdvertisedWindow and on data sent since
sender received AdvertisedWindow!

Internet Layering – engineering for
intelligence and change!

101010100110101110!

Transport
Layer !

Trans.
Hdr.

Network
Layer !

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer !

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer !

Data!

Data!

Data!

Data!
Application

Layer
Any distributed protocol!
(e.g., HTTP, Skype, p2p, !
 KV protocol in your project)!

Send bits to other node directly !
connected to same physical !
network!

Send frames to other node !
directly connected to same !
physical network!
!

Send packets to another node !
possibly located in a different !
network!
!

Send segments to another!
process running on same or!
different node!

