TCP Flow Control — an illustration of
distributed system thinking

David E. Culler
CS162 — Operating Systems and Systems Programming
http://cs162.eecs.berkeley.edu/
Lecture 33
Nov 17, 2014

Read: TCP '88

Recall: Connecting API to Protocol

Client Server Create Server Socket
Create Client Socket
Bind it to an Address (host:port
Connect it to server (host:port)
GE’ SYN, SeqNum = x Listen for Connection
\ 4

SYN and ACK, SeqNum =y and Ack = x + 1 Accept connection

D e

— ACK, Ack =y + 1 Connection Socket
—
write request read request
Host 1 Host 2
read rej ciose FIN _ sponse
FINACK __ ——m
":__:__________M
. close .
Close Client L, A > Connection Socket
FIN ACK
‘g > closed
£
closed

'ver Socket

Recall: Stop & Wait with Errors

« [f aloss wait for a retransmission timeout and
retransmit

- How do you pick the timeout?

Sender Receiver
A 1
RTT —>
timeout v 1
—
Time VY

UCB CS162 Fa14 L32

Where we are

- TCP: Reliable Byte Stream

— Open connection (3-way handshaking)

— Close connection: no perfect solution; no way for two parties
to agree absolutely in the presence of arbitrary message
losses (Byzantine General’s Problem)

- Reliable transmission

— Stop&Wait not efficient for links with large capacity, i.e.,
bandwidth-delay product

— Sliding window more efficient but more complex

- Flow Control
— OS on sender and receiver manage buffers
— Sending rate adjusted according to acks and losses
— Receiver drops to slow sender on over-run

UCB CS162 Fa14 L32

Recap: Sliding Window

window = set of adjacent sequence numbers
The size of the set is the window size
Assume window size is n

Let A be the last ACK’d packet of sender without
gap; then window of sender = {A+1, A+2, ..., A+n}

Sender can send packets in its window

Let B be the last received packet without gap by
receiver, then window of receiver = {B+1,..., B+n}

Receiver can accept out of sequence, if in window

UCB CS162 Fa14 L32

Sliding Window w/o Errors

 Throughput = W*packet_size/RTT

Unacked packets
in sender’s window

Window size (W)

Out-o0-seq packets

= 3 packets | i, receiver’'s window

o |
1,2 2
(1,23 3 — §
{2,3,4} 4 |= {}
3,4,5) 5 :{‘ —
{4,5,6} 6 ———
' -~ —_
‘2(——
— — .
]| Time
Sender Recéiver

UCB CS162 Fa14 L32

Example: Sliding Window w/o Errors

- Assume
— Link capacity, C = 1Gbps
— Latency between end-hosts, RTT = 80ms
— packet_length = 1000 bytes

- What is the window size W to match link’s capacity, C?

+ Solution
We want Throughput =C
Throughput = W*packet_size/RTT
C = W*packet_size/RTT
W = C*RTT/packet_size = 10°bps*80*10-3

Bandwidth-Delay
Product

00b) = 10* packets
Window size ~ Bandwidth (Capacity) x delay (RTT/2)

Remember Little’s Law !

UCB CS162 Fa14 L32

Sliding Window with Errors

- Two approaches
— Go-Back-n (GBN)
— Selective Repeat (SR)

 In the absence of errors they behave identically

- Go-Back-n (GBN)
— Transmit up to n unacknowledged packets
— If timeout for ACK(k), retransmit k, k+1, ...
— Typically uses NACKs instead of ACKs

» Recall, NACK specifies first in-sequence packet missed by
receiver

UCB CS162 Fa14 L32

GBN Example with Errors

Window size (W) = 3 packets

Out-0-seq packets
In receiver’s window

1 jl
2
: 0
Timeout 6 — X /miSSing
Packet 4 {5}
NACK # {5,6}
IS I_NA_CKL—
‘ Why doesn’t sender
s retransmit packet 4
Assume here? — {}
packet 4 lost! —
sender Receiver

UCB CS162 Fa14 L32

Selective Repeat (SR)

- Sender: transmit up to n unacknowledged
packets

- Assume packet ks lost

- Receiver: indicate packet kis missing (use
ACKs)

- Sender: retransmit packet k

UCB CS162 Fa14 L32

SR Example with Errors

Unacked packets
in sender’s window | \n/indow size (W) = 3 packets

{1} 1
{1,2} 2
{1! 25 3} 3 S %
{2,3,4} 4 Iz —
{3,4,5} 5 ———— —
{4,5,6} 6 [—=
ACK 5 —— |
{45556} 4 = ACK6
=1 | Time
n 7
Sender — Receiver

UCB CS162 Fa14 L32

Flow Control

 Recall: Flow control ensures a fast sender does not
overwhelm a slow receiver

- Example: Producer-consumer with bounded buffer

— A buffer between producer and consumer
— Producer puts items into buffer as long as buffer not full
— Consumer consumes items from buffer

- Recall: solutions on one machine using locks, etc.

buffer

Produ-
cer

The Distributed Case

© __—(notan ISP)
p 2 Vs

Ev

Produ-
cer

psi.net

verio.net }\V =

et —"7 i

bbnplanet.net
alter.net
ans.net

Burch/Cheswick map of the Intemet http:iivevrws.cheswick com/imap/index.html
showing the major ISPs. Data collected 26 June 1999 V' eunet Copyright (C) 1939, Lucent Technologies

* Think Globally — Act Locally

UCB CS162 Fa14 L32

When the Internet was young ...

Congestion Avoidance and Control

V. Jacobson
(Originally Published in: Proc. SIGCOMM ‘88, Vol 18 No. 4, August 1988)

In October of "86, the Internet had the first of what
became a series of ‘congestion collapses’. During this
period, the data throughput from LBL to UC Berke-
ley (sites separated by 400 yards and three IMP hops)
dTOPPEd from 32 Kbps to 40 bPS Mike Karels' and I (1) rou_nd-trip.time variance estimation
were fascinated by this sudden factor-of-thousand drop B . o
in bandwidth and embarked on an investigation of why (i) exponential retransmit timer backoff
things had gotten so bad. We wondered, in particular,
if the 4.38SD (Berkeley UNIX) TCP was mis-behaving or
if it could be tuned to work better under abysmal net- (iv) more aggressive receiver ack policy

work conditions. The answer to both of these questions L . _
was “yes”. (v) dynamic window sizing on congestion

Since that time, we have put seven new algorithms
into the 4BSD TCP:

(111) slow-start

(vi) Karn's clamped retransmit backoff

(vit) fast retransmit

Our measurements and the reports of beta testers sug-
gest that the final product is fairly good at dealing with
congested conditions on the Internet.

UCB CS162 Fa14 L32

Van Jacobson’s Concept

= PrH

i | 1 Tk 7]
Sender Receiver
LTI —/TT1J
(I I I I
/ I_Ab_i \

- A A

S r

Packets get “space out” going through bottleneck
Sender learns this spacing (rate) from ack timing

Loss is due primarily to congestion, including receiver
over-run

Start slow and continually increase rate, but ...

Slow-down in response to loss
UCB CS162 Fa14 L32

TCP Flow Control

- TCP: sliding window protocol at byte (not
packet) level
— Go-back-N: TCP Tahoe, Reno, New Reno
— Selective Repeat (SR): TCP Sack

- Receiver tells sender how many more bytes it
can receive without overflowing its buffer
—the AdvertisedWindow

- The ACK contains sequence number N of next
byte the receiver expects,

— receiver has received all bytes in sequence up to and
including N-1

TCP Flow Control

Sending Process

OS\\ / -
(G (TCP/IP)

- TCP/IP implemented by OS (Kernel)

— Cannot do context switching on sending/receiving every packet

» At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet

- Need buffers to match ...
— sending app with sending TCP
— receiving TCP with receiving app

TCP Flow Control

Sending Process

I TCP layer jU.) @/ TCP layer

0SH \ /

IP layer k J IP layer
- Three pairs of producer-consumer’s
@ sending process > sending TCP

@ Sending TCP - receiving TCP
® receiving TCP - receiving process

TCP Flow Control

Sending Process

I TCP layer j {

TCP layer

< 300 bytes

>

0SH \ /

IP layer k J

- Example assumptions:
— Maximum IP packet size = 100 bytes
— Size of the receiving buffer (MaxRcvBuf) = 300 bytes

- Recall, ack indicates the next expected byte in-
sequence, not the last received byte

« Use circular buffers

IP layer

Circular Buffer

- Assume
— A buffer of size N
— A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array

- Buffer stores at most N consecutive bytes from the stream
- Byte k stored at position (k mod N) + 1 in the buffer

buffered data

A
sequence # l 1

S 97 28 29 30 31 32 33 34 35 36

H{E|L|L|O WI[O|R|L

(28 mod 10) + 1 =9 (35 mod 10) +1 =6
(Cl\llrciu:a(l)r)buffer Lo wlolRr =L
B 1 2 3 4 5 6 7 8 10

TCP Flow Control

Sending Process
LastByteWritten(0) LastByteRead(0)
LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

- LastByteWritten: last byte written by sending process

- LastByteSent: last byte sent by sender to receiver

- LastByteAcked: last ack received by sender from receiver
- LastByteRcvd: last byte received by receiver from sender

- NextByteExpected: last in-sequence byte expected by
receiver

- LastByteRead: last byte read by the receiving process

TCP Flow Control

Sending Process

Receiving Process

/
LastByteWrﬁten ﬂ_astByteRead
MaxSendBuffer MaxRcvBuffer,
D > < >
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

- AdvertisedWindow: number of bytes TCP receiver can
receive

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

- SenderWindow: number of bytes TCP sender can send
SenderWindow = AdvertisedWindow — (LastByteSent — LastByteAcked)

TCP Flow Control

Sending Process

Receiving Process

/
LastByteWritt% ﬂ_astByteRead
< MaxSendBuffe; < MaxRcvBuffer,
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

- Still true if receiver missed data....

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

- WriteWindow: number of bytes sending process can write

WriteWindow = MaxSendBuffer — (LastByteWritten — LastByteAcked)

TCP Flow Control

Sending Process

LastByteWritten(350)\ LastByteRead(0)
1, 350
A‘\ \
LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

- Sending app sends 350 bytes

* Recall:

— We assume IP only accepts packets no larger than 100 bytes
— MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

TCP Flow Control

Sending Process

LastByteWritten(350)\

Receiving Process

1,
100 101, 350

4

LastByteAcked(0) LastByteSent(100)

{[1,100]}

Data[1,100]

LastByteRead(0)
1,

Pt

LastByteRcvd(100) NextByteExpected(101)

—| {[1,100]}

Sender sends first packet (i.e., first 100 bytes) and
receiver gets the packet

TCP Flow Control

LastByteWritten(350)\ LastByteRead(0)
1 1
’ 101, 350 ’
1100 ! 100
LastByteAcked(0) LastByteSent(100) LastByteRcvd(100) NextByteExpected(101)
1,100 Data[1,100]
{l I} alt, | 11,1007
d\,\N\ﬂ =
ACK=

Receiver sends ack for 1st packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

- 300 — (100 — 0) = 200

TCP Flow Control

LastByteWritten(350)\ LastByteRead(0)
1, 101, 1, 101,
| 100200 { S0 100200
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{{1,100]} Data[1,100]
{[1,200]} Data[101,200] > 1,100}
| . 200474 {[1,200]}
(o1, AW~
ACK=1E

Sender sends 2"d packet (i.e., next 100 bytes) and
receiver gets the packet

TCP Flow Control

LastByteWritten(350)\ LastByteRead(0)
1, 200 201, 350 1, 200
4 V\ /’V\
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200] > 1,100}
| . 200474 {[1,200]}
Lot, AW
ACK=1E

Sender sends 2"d packet (i.e., next 100 bytes) and
receiver gets the packet

TCP Flow Control

Sending Process

0
LastByteWritten(350)\' |LastByteRead(100)
1, 200 201, 350 1gog1g’

LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)

Receiving Process

1,
10

Dataf1,100
{[1,100]} ata[1,100] _J 411007

Data[101,200
012 T o b

nck=101 AT

Receiving TCP delivers first 100 bytes to receiving
process

TCP Flow Control

Sending Process

LastByteWritten(350)\ LastByteRead(100)
1, 200 201, 350 101,

Pt N

LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{{1,1001} Data[1,100]
{[1,200]} Data[101,200] __— {(1,100]}
Lot, AW 200
P\C\(ﬁ ” 01 , Ad\’\,\,\
ACK

Receiver sends ack for 29 packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

- 300 — (200 — 100) = 200

TCP Flow Control

LastByteWritten(350) \ LastByteRead(100)
1 200 201, 301, 101,
je 300 \350 ﬁ,\
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]
{l I} alt, | 11,1007
{[1,200]} Data| 101,200]

{[1,300]} 00] {{1,2000

I

Sender sends 3" packet (i.e., next 100 bytes) and the
packet is lost

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
301,
1,300 a5Q

LastByteAcked(0) LastByteSent(300)

{[1,100]}

Data[1,100]

\LastByteRead(1 00)
101,

Pt N

LastByteRcvd(200) NextByteExpected(201)

{[1,200]}

Data[101,200]

{[1,100]}

}

{[1,300]}

0

0] {[1,2001}

I

Sender stops sending as window full
SndWin = AdvWin — (LastByteSent — LastByteAcked)

- 300 - (300-0)=0

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
301, 101,
| 1,300 \ 350 %’\
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]

—! {[1,100]}

{11,200]} 7‘[;3%2‘4, 11,200]}
{[1,300]} ,300] (/ ’

«— Ack=101, AdvWin =200

« Sender gets ack for 1st packet
« AdWin =200

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)

101,300 07,

350
T

LastByteAcked(100) LastByteSent(300)

{[1,100]}

Data[1,100]

LastByteRead(100)
101,

Pt N

LastByteRcvd(200) NextByteExpected(201)

{[1,200]}

{[1,300]}

—! {[1,100]}

Data[101,200
s L

{101, 300} & Ack=101, AdvWin = 200

-

receiver)

-

« Ack for 18t packet (ack indicates next byte expected by

* Receiver no longer needs first 100 bytes

~N

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)

101,300 07,

350
T

LastByteAcked(100) LastByteSent(300)

{[1,100]}

Data[1,100]

LastByteRead(100)
101,

Pt N

LastByteRcvd(200) NextByteExpected(201)

{[1,200]}
{[1,3001]}

—! {[1,100]}

Data[101,200
s L

{101, 300} l— Ack=101, AdvWin = 200

Sender still cannot send as window full
SndWin = AdvWin — (LastByteSent — LastByteAcked)

=200 - (300-100) =0

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
101,300 S e,
! \ T
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]

{l I} alt, | 11,1007

{[1,200]} Data[101,200 1019

(11,3001 {101,2000

{101, 300}
{201, 300} & Ack=201, AdvWin = 200

/,300]4

« Sender gets ack for 2" packet
« AdvWin = 200 bytes

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
201, 301, 101,
300 350 ﬁ,\
— \
LastByteAcked(200) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]
{l I} alt, | 11,1007
{[1,200]} Data[101,200 1019
(11,3001 {101,2000

{101, 300}
{201, 300} & Ack=201, AdvWin = 200

/,300]4

Sender can now send new data!
SndWin = AdvWin — (LastByteSent — LastByteAcked) = 100

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
201, 301, r 101, 301,
300 350 W—'
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
1,100 Data[1,100]
{[) al, {4,1007}
{l1,200D 101,200
{[1,300]} 101,200D

{101, 300}
{[201,350]}

Data[301,350]

—| {[101,2001],[301,350]}

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 W—'
— \
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
1,100 Data[1,100]
{l I} alt, {4,1007}
{1,200 101,200
{[1,300]} 101,200D

{101, 300}
{[201,350]} Data[301,350]

{201, 350} je— Ack=201, AdvWin = 50

—] {[101,200],[301,350]}

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, r 101, 301,
300 350 w
— \
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
201,350 Data[301,350
(1201,850] 2[301,350] © 3500

« Ack still specifies 201 (first byte out of sequence)
« AdvWin =50, so can sender re-send 3" packet?

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
201, 301, r 101, 301,
300 350 w
— \
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{201,350} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} je— Ack=201, AdvWin = 50 -

« Ack still specifies 201 (first byte out of sequence)
« AdvWin =50, so can sender re-send 3" packet?

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, r 101, 201, 301,
300 350 b 200 300 350
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} fe— Ack=201, AdvWin = 50 o
{(201,350]} Data[201,300]

— {[101,350]}

Yes! Sender can re-send 3 packet since it’s in existing window — won't
cause receiver window to grow

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, r
300 350 b 101, &0
/
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350])

{201, 350} fe— Ack=201, AdvWin = 50 o
(201,350} Data[201,300]

— {[101,350]}

Yes! Sender can re-send 3 packet since it’s in existing window — won't
cause receiver window to grow

TCP Flow Control

Sending Process

LastByteWritten(350) | LastByteRead(100)
201, 301, r
300 350 b 101, &0
/
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350])

{201, 350} fe— Ack=201, AdvWin = 50 o
(201,350} Data[201,300]

—| {[101,350]}

0 fe— Ack=351, AdvWin =50

« Sender gets 3" packet and sends Ack for 351
 AdvWin =50

TCP Flow Control

Sending Process

LastByteWritten350), [LastByteRead(100)
101, 350
> —
LastByteAcked(350) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{{201,350]} Data[301,350]

—| {[101,200],[301,350])

{201, 350} fe— Ack=201, AdvWin = 50 o
(201,350} Data[201,300]

— {[101,350]}

0 fe— Ack=351, AdvWin =50

{ Sender DONE with sending all bytes!]

Discussion

 Why not have a huge buffer at the receiver
(memory is cheap!)?

* Sending window (SndWnd) also depends on
network congestion

— Congestion control: ensure that a fast sender doesn’t
overwhelm a router in the network

— discussed in detail in CS168

 In practice there is another set of buffers in the
protocol stack, at the link layer (i.e., Network
Interface Card)

Summary: Reliability & Flow Control

- Flow control: three pairs of producer consumers
— Sending process - sending TCP
— Sending TCP - receiving TCP
— Receiving TCP - receiving process

« AdvertisedWindow: tells sender how much new
data the receiver can buffer

- SenderWindow: specifies how many more bytes
the sending application can send to the sending
0S

— Depends on AdvertisedWindow and on data sent since
sender received AdvertisedWindow

Internet Layering — engineering for
intelligence and change

Application Any distributed protocol
Layer Data (e.g., HTTP, Skype, p2p,
@ KV protocol in your project)
Send segments to another
Transport | | o . TLad”S- process running on same or
Layer " different node
@ Send packets to another node
Network Net. | Trans possibly located in a different
Data
Layer Har. | Hdr network
o Send frames to other node
Datalink Frame [Net. | Trans directly connected to same
Pata | g | Hor | Hd -
Layer r " r physical network
- ?Cal """""""""""" Send bits to other node directly
LZ or 101010100110101110 connected to same physical
y network

