

Operating Systems and The Cloud, Part II: Search => Cluster Apps => Scalable Machine Learning

David E. Culler CS162 – Operating Systems and Systems Programming Lecture 40 December 3, 2014

> Proj: CP 2 today Reviews in R&R Mid3 12/15

The Data Center as a System

- Clusters became THE architecture for large scale internet services
 - Distribute disks, files, I/O, net, and compute over everything
 - Massive AND Incremental scalability
- Search Engines the initial "Killer App"
- Multiple components as Cluster Apps
 - Web crawl, Index, Search & Rank, Network, ...
- Global Layer as a Master/Worker pattern
 - GFS, HDFS
- Map Reduce framework address core of search on massive scale – and much more
 - Indexing, log analysis, data querying
 - Collating, inverted indexes : map(k,v) => f(k,v),(k,v)
 - Filtering, Parsing, Validation
 - Sorting

Lessons from Giant-Scale Services, Eric Brewer, IEEE Computer, Jul 2001

Figure 1. The basic model for giant-scale services. Clients connect via the Internet and then go through a load manager that hides down nodes and balances traffic.

Giant-Scale Services

Research ...

← → C 🗋 research.google.com/archive/mapreduce-osdi04... ☆

Home Prev Next

MapReduce: Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat Google, Inc.

Home Prev Next

Related Work

- Programming model inspired by functional language primitives
- Partitioning/shuffling/similar to many large-scale sorting systems
 NOW-Sort ['97]
- Re-execution for fault tolerance
 - BAD-FS ['04] ard TACC ['97]
- Locality optimization has parallels with Active Disks/Diamond work
 - Active Disks ['01], Diamond ['04]
- Backup tasks similar to Eager Scheduling in Charlotte system
 Charlotte ['96]
- Dynamic load balancing solves similar problem as River's distributed queues

• River ['99]

The Data Center as a System

- Clusters became THE architecture for large scale internet services
 - Distribute disks, files, I/O, net, and compute over everything
 - Massive AND Incremental scalability
- Search Engines the initial "Killer App"
- Multiple components as Cluster Apps
 - Web crawl, Index, Search & Rank, Network, ...
- Global Layer as a Master/Worker pattern
 - GFS, HDFS
- Map Reduce framework address core of search on massive scale – and much more
 - Indexing, log analysis, data querying
 - Collating, inverted indexes : map(k,v) => f(k,v),(k,v)
 - Filtering, Parsing, Validation
 - Sorting,
 - Graph Processing (???) page rank,
 - Cross-correlation (???)
 - Machine Learning (???)

Time Travel

It's not just storing it, it's what you do with the data

AMPLab Unification Philosophy

Don't specialize MapReduce – Generalize it!

Two additions to Hadoop MR can enable all the models shown earlier!

- I. General Task DAGs
- 2. Data Sharing

For Users:

12/1/14

Fewer Systems to Use Less Data Movement

Making Sense of Big Data with Algorithms, Machines & People

Berkeley Data Analytics Stack

The Data Deluge

Billions of users connected through the net

- WWW, Facebook, twitter, cell phones, ...
- 80% of the data on FB was produced last year
- Clock Rates stalled
- Storage getting cheaper
 - Store more data!

Data Grows Faster than Moore's Law

UCB CS162 Fa14 L39

Complex Questions

- Hard questions
 - What is the impact on traffic and home prices of building a new ramp?
- Detect real-time events
 - Is there a cyber attack going on?
- Open-ended questions
 - How many supernovae happened last year?

MapReduce Pros

Distribution is completely transparent

- Not a single line of distributed programming (ease, correctness)
- Automatic fault-tolerance
 - Determinism enables running failed tasks somewhere else again
 - Saved intermediate data enables just re-running failed reducers

Automatic scaling

 As operations as side-effect free, they can be distributed to any number of machines dynamically

Automatic load-balancing

 Move tasks and speculatively execute duplicate copies of slow tasks (stragglers)

HDFS – distributed file system

- Blocks are distributed, with replicas, across nodes
- Name-node provides the index structure
- Client locates blocks via RPC to metadata
- Data nodes inform Namenode of failures through heartbeats
- Block locations made visible to MapReduce Framework
 UCB CS162 Fa14 L39

- both a programming model and a clustered computing system
 - A specific pattern of computing over large distributed data sets
 - A system which takes a MapReduce-formulated problem and executes it on a large cluster
 - Hides implementation details, such as hardware failures, grouping and sorting, scheduling ...

Word-Count using MapReduce

Problem: determine the frequency of each word in a large document collection

General MapReduce Formulation

Map:

Preprocesses a set of files to generate intermediate key-value pairs, in parallel

Map: $(k_1, v_1) \to [(k_2, v_2)]$

Group:

- Partitions intermediate key-value pairs by unique key, generating a list of all associated values
 - » Shuffle so each key list is all on a node

Reduce:

- For each key, iterate over value list
- Performs computation that requires context between iterations
- Parallelizable amongst different keys, but not within one key

Reduce: $(k_2, [v_2]) \to (k_2, f([v_2]))$

MapReduce Logical Execution

UCB CS162 Fa14 L39

MapReduce Parallel Execution

MapReduce Parallelization: Pipelining

- Fine grain tasks: many more map tasks than machines
 - Better dynamic load balancing
 - Minimizes time for fault recovery
 - Can pipeline the shuffling/grouping while maps are still running
- Example: 2000 machines -> 200,000 map + 5000 reduce tasks

Process	Time>										
User Program	MapReduce()				wait						
Master	Assign tasks to worker machines										
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Read	d 2.3	Red	uce 2

MR Runtime Execution Example

- The following slides illustrate an example run of MapReduce on a Google cluster
- A sample job from the indexing pipeline, processes ~900 GB of crawled pages

MR Runtime (1 of 9)

MR Runtime (2 of 9)

MR Runtime (3 of 9)

MR Runtime (4 of 9)

MR Runtime (5 of 9)

MR Runtime (6 of 9)

MR Runtime (7 of 9)

MR Runtime (8 of 9)

MR Runtime (9 of 9)

Fault Tolerance vis re-execution

- On Worker Failure:
 - Detect via periodic heartbeats
 - Re-execute completed and in-progress map tasks
 - Re-execute in progress reduce tasks
 - Task completion committed through master
- Master ???

Admin

- Project 3
- Reviews during R&R
- Mid 3 in Final Exam Group 1 (12/15 8-11)
 - 10 Evans (currently)

MapReduce Cons

Restricted programming model

- Not always natural to express problems in this model
- Low-level coding necessary
- Little support for iterative jobs (lots of disk access)
- High-latency (batch processing)
- Addressed by follow-up research and Apache projects
 - Pig and Hive for high-level coding
 - Spark for iterative and low-latency jobs

- Two additions to Hadoop MR can enable all the models shown earlier!
- 1. General Task DAGs
- 2. Data Sharing
- For Users:
- Fewer Systems to Use
- Less Data Movement

UCB / Apache Spark Motivation

Complex jobs, interactive queries and online processing all need one thing that MR lacks: Efficient primitives for data sharing

Complex jobs, interactive queries and online processing all need one thing that MR lacks: Efficient primitives for data sharing

Problem: in MR, the only way to share data across jobs is using stable storage (e.g. file system) → slow!

-- Datanami, 9/15/14

M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, "Spark: Cluster Computing with Working Sets, USENIX HotCloud, 2010.

Iteration in Map-Reduce

Cost of Iteration in Map-Reduce

Cost of Iteration in Map-Reduce

Dataflow View

Memory Opt. Dataflow

Memory Opt. Dataflow View

Spark:10-100× faster than Hadoop MapReduce

Resilient Distributed Datasets (RDDs

- API: coarse-grained *transformations* (map, group-by, join, sort, filter, sample,...) on immutable collections
- Resilient Distributed Datasets (RDDs)
 - Collections of objects that can be stored in memory or disk across a cluster
 - Built via parallel transformations (map, filter, ...)
 - Automatically rebuilt on failure
- Rich enough to capture many models:
 - Data flow models: MapReduce, Dryad, SQL, ...
 - Specialized models: Pregel, Hama, ...

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing, NSDI 2012.

Fault Tolerance with RDDs

RDDs track the series of transformations used to build them (their *lineage*)

- Log one operation to apply to many elements
- No cost if nothing fails

Enables per-node recomputation of lost data

