

Towards the Internet of Everything...

David E. Culler CS162 – Operating Systems and Systems Programming http://cs162.eecs.berkeley.edu/ Lecture 41 December 5, 2014

8

1997 - The Internet of Every Computer

2007 - The Internet of Every Body

2017 - The Internet of Everyday Things

Why "Real" Information is so Important

JU11,

Mr.

», «لال

Wift

RGB LED Controller

Enjoy Wireless Plug-In Lighting or Appliance Control

Cooper Wiring Devices RF9505-TDS ASPIRE RF 15A Split Control Duplex Receptacle - Desert Sand

Add Z-Wave Control to Your Incandescent or Fluorescent Appliances

GE 45605 Z-Wave Wireless Lighting Control Duplex Receptacle

 \mathcal{M}_{n_i}

Dim.

2014

2014 Will Be The Year Of Wearable Technology

CES 2014: Connected Home And Wearables To Take Center Stage

An oasis of gadgets at CES 2014 will highlight the powers of Bluetooth and wearable computing, the connected home and the quantified self.

Broad Technology Trends

Moore's Law: # transistors on cost-effective chip doubles every 18 months

Bell's Law: a new computer class emerges every 10 years

Same fabrication technology provides CMOS radios for communication and micro-sensors

'Low-Tech' Enabling Technology

Microcontroller

Flash Storage

Radio Communication

Sensors

IEEE 802.15.4

The Systems Challenge

Monitoring & Managing Spaces and Things

Miniature, low-power connections to the physical world

Leading Internet Research Perspective ~ 1999

- "Resource constraints may cause us to give up the layered architecture."
- "Sheer numbers of devices, and their unattended deployment, will preclude reliance on broadcast communication or the configuration consulty needed to deploy and operate networked device more and scalability advantages to designing acations using localized
- algorithms."
- "Unlike traditional networks, a sensor node may not need an identity (e.g. address)."
- "It is reasonable to assume that sensor networks can be tailored to the application at hand."

Key WSN Research Developments

Event-Driven Component-Base Operating System

- Framework for building System & Network abstractions
- Low-Power Protocols
- Hardware and Application Specific
- Idle listening
 - All the energy is consumed by listening for a packet to receive
 - => Turn radio on only when there is something to hear
- Reliable routing on Low-Power & Lossy Links
 - Power, Range, Obstructions => multi-hop
 - Always at edge of SNR => loss is common
 - => monitoring, retransmission, and local rerouting
- Trickle don't flood (tx rate < 1/density, and < info change)
 - Connectivity is determined by physical points of interest, not network designer.
 - never naively respond to a broadcast
 - re-broadcast very very politely

Decade of Networking (sans Architecture)

Internet of Every Thing – Realized 2008

* Production implementation on TI msp430/cc2420

- Footprint, power, packet size, & bandwidth
- Open version 27k / 4.6k

	ROM	RAM
CC2420 Driver	3149	272
802.15.4 Encryption	1194	101
Media Access Control	330	9
Media Management Control	1348	20
6LoWPAN + IPv6	2550	0
Checksums	134	0
SLAAC	216	<mark>32</mark>
DHCPv6 Client	212	3
DHCPv6 Proxy	104	2
ICMPv6	<mark>522</mark>	0
Unicast Forwarder	1158	451
Multicast Forwarder	352	4
Message Buffers	0	2048
Router	2050	106
UDP	450	6
ТСР	1674	50

Internet of Every Thing – standardized 2010 T. Winter, Ed.

ROLL Internet-Draft Intended status: Standards Track Expires: April 4, 2011

2008-02-15 charter

Routing Over Low power and Lossy networks (roll) _____

Charter

Current Status: Active Working Group

Chair(s): JP Vasseur <jpv@cisco.com> David Culler <culler@eecs.berkeley.edu>

ZigBee

Alliance

P. Thubert, Ed. Cisco Systems A. Brandt Sigma Designs T. Clausen LIX, Ecole Polytechnique J. Hui Arch Rock Corporation R. Kelsey Ember Corporation P. Levis Stanford University K. Pister Dust Networks R. Struik

> JP. Vasseur Cisco Systems October 1, 2010

RPL: IPv6 Routing Protocol for Low power and Lossy Networks draft-ietf-roll-rpl-12

Abstract

Low power and Lossy Networks (LLNs) are a class of network in which both the routers and their interconnect are constrained. LLN routers

ZigBee Smart Energy Version 2.0 Documents

ZigBee Smart Energy version 2.0 will be IP-based and offer a variety of new features.

Smart meter rollouts

Figure 2. Expected Smart Meter Deployments by State by 2015

EDISON Electric Efficiency

http://www.edisonfoundation.net/iee/Documents/IEE_SmartMeterRollouts_0512.pdf

Hardware

UCB CS162 Fa14 L41

The Mote/TinyOS revolution.

3/6/14

22

Example 2004 Mote: TelosB

Microcontrollers

Mote Type	WeC	René	René	Dot	Mica	Mica2Dot*	Mica2*	Telos
Year	1998	1999	2000	2000	2001	2002	2002	2004
Microcontroller								
Type	AT90	LS8535	ATmeg	za163	ATmega128			TI MSP430
Program 48K ROM		8	16	3	128			48
RAM (I 10K RAM	0).5	1		4			10
Active 1	1	5	15	5		8	33	3
Sleep Power (μW)	4	45	45	5		75	75	15
Wakeup Time (μs)	10	000	36	3		180	180	6
Nonvolatile storage								
Chip	24LC256		AT45DB041B			ST M25P80		
Connection type	I^2C		SPI			SPI		
Size (KB)	32		512			1024		
Communication								
Radio	TR1000			TR1000	CC1000		CC2420	
Data ra 250 kbps	10			40	38.4		250	
Modula tion type	OOK			ASK	FSK		O-QPSK	
Receive Power (mW)	9			12	29		38	
Transmit Power at 0dBm (mW)	36			36	42		35	
Power Consumption								
Minimum Operation (V)	2	2.7 2.7		7	2.7			1.8
Total Active Power (mW)	24		27	44	89	41		
Programming and Sensor Interface								
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	16-pin
Communication	IEEE 1284 (progra			camming) and RS232			USB	
Integrated Sensors	no	no	no	yes	no	no	no	yes

Mote Characteristics

- Limited resources
 - RAM, ROM, Computation, Energy
 - ➔ Wakeup, do work as quickly as possible, sleep
- Hardware modules operate concurrently
 - No parallel execution of code (not Core 2 Duos!)
 - Asynchronous operation is first class
- Diverse application requirements
 Efficient modularity
- Robust operation
 - Numerous, unattended, critical
 - ➔ Predictable operation

What we mean by "Low Power"

- 2 AA => 1.5 amp hours (~4 watt hours)
- Cell => 1 amp hour (3.5 watt hours)

Storm 2014

Table 4: A small sample of available Cortex-M4 processors

Vendor	Device	$f_{max}(Mhz)$	SRAM(KB)	Flash(KB)	Sleep(µA)	Wake(µS)
NXP	LPC408x	120	96	512	550	240
STMicro	STM32F372xx	72	32	256	1.32	42.7
Silabs	EFM32WG990	48	32	256	0.95	2
Freescale	K20Dx	50	16	128	1.3	130
Atmel	SAM4L	48	64	512	3	1.5

UCB CS162 Fa14 L41

TinyOS – Framework for Innovation

UCB => A worldwide community

CWSN'11

A Low-Power Standard Link

	802.15.4	802.15.1	802.15.3	802.11	802.3		
Class	WPAN	WPAN	WPAN	WLAN	LAN		
Lifetime (days)	100-1000+	1-7	Powered	0.1-5	Powered		
Net Size	65535	7	243	30	1024		
BW (kbps)	20-250	720	11,000+	11,000+	100,000+		
Range (m)	1-75+	1-10+	10	1-100	185 (wired)		
Goals	Low Power, Large Scale, Low Cost	Cable Replacement	Cable Replacement	Throughput	Throughput		

 Low Transmit power, Low Signal-to-noise Ratio (SNR), modest BW, Little Frames

BTIF

The "Idle Listening" Problem

- The power consumption of "short range" (i.e., lowpower) wireless communications is roughly the same when
 - transmitting,
 - receiving,
 - or simply ON, "listening" for potential reception.
 - IEEE 802.15.4, Zwave, Bluetooth, ..., WiFi
- Radio must be ON (listening) in order receive anything.
 - Transmission is rare
 - Listening happens all the time
- ⇒Energy consumption dominated by *idle listening*

Communication Power – Passive Vigilance

Listen just when there is something to hear ...

3 Basic Solution Techniques

Scheduled Listening

- Arrange a schedule of communication Time Slots
- Maintain coordinated clocks and schedule
- Listen during specific "slots"
- Many variants:
 - » Aloha, Token-Ring, TDMA, Beacons piconets, ...
 - » S-MAC, T-MAC, PEDAMACS, TS

Sampled Listening

- Listen for very short interval transmissions
- On detection, listen actively to receive
- DARPA packet radio, LPL, BMAC, Y
- Maintain "always on" illusion, Robust
- Listen after send (with powered infrastructure)
 - After transmit to a receptive device, listen for a short time
 - Many variants: 802.11 AMAT, Key fobs, remote modems, ...
- Many hybrids possible

oct er

Self-Organized Routing - nutshell

Key IPv6 Contributions

- Large simple address
 - Network ID + Interface ID
 - Plenty of addresses, easy to allocate and manage
- Autoconfiguration and Management
 - ICMPv6
- Integrated bootstrap and discovery
 - Neighbors, routers, DHCP
- Protocol options framework
 - Plan for extensibility
- Simplify for speed
 - MTU discovery with min
- 6-to-4 translation for compatibility

Routing Fragment Dst Opt

ICMPv6

IPv6

HbH Odt

6LoWPAN – IPv6 over 802.15.4

- Large IP Address & Header => 16 bit short address / 64 bit EUID
- Minimum Transfer Unit => Fragmentation
- Short range & Embedded => Multiple Hops

Network packet

6LoWPAN adaptation header

- Eliminate all fields in the IPv6 header that can be derived from the 802.15.4 header in the common case
 - Source address

Length

- : derived from link address
- Destination address
- : derived from link address
 - : derived from link frame length
- Traffic Class & Flow Label : zero
- Next header : UDP, TCP, or ICMP
- Additional IPv6 options follow as options

Internet – WSN assimilated

Complete Embedded IPv6 Stack

Adding up the pieces

* Production implementation on TI msp430/cc2420

	ROM	RAM
CC2420 Driver	3149	272
802.15.4 Encryption	1194	101
Media Access Control	330	9
<u>Media Management Control</u>	1348	20
6LoWPAN + IPv6	2550	0
Checksums	134	0
SLAAC	216	32
DHCPv6 Client	212	3
DHCPv6 Proxy	104	2
ICMPv6	522	0
Unicast Forwarder	1158	451
Multicast Forwarder	352	4
Message Buffers	0	2048
Router	2050	106
UDP	450	6
ТСР	1674	50

r I

Real World - "Signals" and "Information"

- What is the bandwidth of the weather?
- What is the nyquist of the soil?
- What is the placement noise?
- What is the sampling jitter error?
- How do you classify it?
- How do you search it?

Correlation Between Sap Flow and Light, VPD and Temperature with Height in the Canopy Through Time (Loess Smoothing)

The Macroscope - Keck HydroWatch

Sagehen wireless data infrastructure

Mote + Accelerometer Board) Battery

Vertical Sensor at Quarter-span 365m North of the South Tower Vertical Sensor at Quarter-span 335m South of the North Tower

Acceleration during the MA to CA FedEX shipment, Mote 7

The "Killer App" for WSNs

- Energy and the environmental impact of extraction, use, and disposal
- THE problem of the Industrial Age
- We need to find Information Age solutions to THE Industrial Age Problem
- => Fundamental transformation/ in the architecture of the electric grid

Traditional Load-Following Grid

6.00

10-00 12:00

8/22/2011

22.00

Towards an 'Aware' Energy Infrastructure

iPower

8/22/2011

51

How can we transform buildings into fundamentally more agile machines?

- Programmable
- Separation of the hardware capabilities (primitives)
- from the universe of potential behaviors (applications)
- allow them to be tailored to our desires
 - To the full extent of the underlying capabilities
- And become good citizens of the grid

Software Defined Buildings

- Building Application Programming Interface (BAS)
 - Enable application portability and innovation
- Building Operation System & Services (BOSS)
 - Physical services and distributed device drivers
 - Middle services: mapping, transactions, RAS
 - Application services: baselining, ensemble, ...
- Innovate in Model-Driven Predictive Control
 - objectives: efficiency, satisfaction, supply-following
- Rich Human-Building Interaction
 - Location, personal and ambient devices, gestures, ...
- Introduce meaningful security

BOSS Architecture – first cut

The Revolution

The Revolution

CS162: Spiral

