
Recap – Home Stretch

David E. Culler
 CS162 – Operating Systems and Systems Programming

http://cs162.eecs.berkeley.edu/
Lecture 43

December 10, 2014

Course Structure: Spiral

12/10/14 UCB CS162 Fa14 L1! 2

intro

What is an operating system?
•  Special layer of software that provides

application software access to hardware
resources

–  Convenient abstraction of complex hardware devices
–  Protected access to shared resources
–  Security and authentication
–  Communication amongst logical entities

12/10/14 UCB CS162 Fa14 L1! 3

Hardware

appln
appln

appln

OS

What is an Operating System?
•  Referee

–  Manage sharing of resources, Protection, Isolation
»  Resource allocation, isolation, communication

•  Illusionist
–  Provide clean, easy to use abstractions of physical

resources
»  Infinite memory, dedicated machine
»  Higher level objects: files, users, messages
»  Masking limitations, virtualization

•  Glue
–  Common services

»  Storage, Window system, Networking
»  Sharing, Authorization
»  Look and feel

12/10/14 UCB CS162 Fa14 L1! 4

Core Concepts

9/15/14 cs162 fa14 L7! 5

•  Processes
–  Thread(s) + address space

•  Address Space
•  Protection
•  Dual Mode
•  Interrupt handlers

–  Interrupts, exceptions, syscall
•  File System

–  Integrates processes, users, cwd, protection
•  Key Layers: OS Lib, Syscall, Subsystem, Driver

–  User handler on OS descriptors
•  Process control

–  fork, wait, signal, exec
•  Communication through sockets

–  Integrates processes, protection, file ops, concurrency
•  Client-Server Protocol
•  Concurrent Execution: Threads
•  Scheduling

Threads!
Process 1"

CPU
sched." OS"

CPU"
(1 core)"

1 thread
at a time"

IO"
state"

Mem."

…"

threads"
Process N"

IO"
state"

Mem."

…"

threads"

…!

•  Independently
schedulable entity

•  Sequential thread of
execution that runs
concurrently with
other threads

–  It can block waiting for
something while others
progress

–  It can work in parallel
with others (ala cs61c)

•  Has local state (its
stack) and shared
(static data and heap)

CPU
state

CPU
state

CPU
state

CPU
state

9/12/14 cs162 fa14 L6! 6

Concurrency Coordination Landscape
Concurrent Applications

Shared Coordinated Objects

Synchronization Variables

Atomic Operations

Hardware

Bounded
Queue Ordered List Dictionary Barrier

Locks Semaphore Condition Variables
Monitors

Interrupt Disable/Enable Test-and-Set

Interrupts Controllers Multiple Processors
cmp&swap

xchng

fetch&inc LL + SC

Flag

lecture 8

Definitions!
•  Synchronization: using atomic operations to ensure

cooperation between threads!
–  For now, only loads and stores are atomic!
–  We’ll show that is hard to build anything useful with only reads and

writes!
!
•  Critical Section: piece of code that only one thread can

execute at once!

•  Mutual Exclusion: ensuring that only one thread
executes critical section!

–  One thread excludes the other while doing its task!
–  Critical section and mutual exclusion are two ways of describing the

same thing!

Scheduling Summary!
•  Scheduling: selecting a process from the ready queue and

allocating the CPU to it"
•  FCFS Scheduling:"

–  Run threads to completion in order of submission"
–  Pros: Simple (+)"
–  Cons: Short jobs get stuck behind long ones (-)"

•  Round-Robin Scheduling: "
–  Give each thread a small amount of CPU time when it executes; cycle

between all ready threads"
–  Pros: Better for short jobs (+)"
–  Cons: Poor when jobs are same length (-)"

•  Shortest Remaining Time First (SRTF):!
–  Run whatever job has the least remaining amount of computation to do!
–  Pros: Optimal (average response time) !
–  Cons: Hard to predict future, Unfair!

"
"

Address Translation!

Key OS Concept: Address Space
•  Program operates in an address space that is

distinct from the physical memory space of the
machine

9/3/14 UCB CS162 Fa14 L2! 16

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

si
ca

l a
dd

re
ss

”

Summary of Translation!
•  Memory is a resource that must be multiplexed!

–  Controlled Overlap: only shared when appropriate!
–  Translation: Change virtual addresses into physical addresses!
–  Protection: Prevent unauthorized sharing of resources!

•  Simple Protection through segmentation!
–  Base + Limit registers restrict memory accessible to user!
–  Can be used to translate as well!

•  Page Tables!
–  Memory divided into fixed-sized chunks of memory!
–  Offset of virtual address same as physical address!

•  Multi-Level Tables!
–  Virtual address mapped to series of tables!
–  Permit sparse population of address space!

•  Inverted page table: size of page table related to physical
memory size!

Objective!

•  Dive deeper into the concepts and mechanisms
of address translation!

•  Enabler of many key aspects of operating
systems!

–  Protection!
–  Multi-programming!
–  Isolation!
–  Memory resource management!
–  I/O efficiency!
–  Sharing!
–  Inter-process communication!
–  Debugging!
–  Demand paging!

•  Today: Linking, Segmentation, Paged Virtual
Address !

Physical Address!
Offset"

How to Implement Paging?!

•  Page	
 Table	
 (One	
 per	
 process)	

–  Resides	
 in	
 physical	
 memory	

–  Contains	
 physical	
 page	
 and	
 permission	
 for	
 each	
 virtual	
 page	

»  Permissions	
 include:	
 Valid	
 bits,	
 Read,	
 Write,	
 etc	

•  Virtual	
 address	
 mapping	

–  Offset	
 from	
 Virtual	
 address	
 copied	
 to	
 Physical	
 Address	

»  Example:	
 10	
 bit	
 offset	
 ⇒	
 1024-­‐byte	
 pages	

–  Virtual	
 page	
 #	
 is	
 all	
 remaining	
 bits	

»  Example	
 for	
 32-­‐bits:	
 32-­‐10	
 =	
 22	
 bits,	
 i.e.	
 4	
 million	
 entries	

»  Physical	
 page	
 #	
 copied	
 from	
 table	
 into	
 physical	
 address	

–  Check	
 Page	
 Table	
 bounds	
 and	
 permissions	

Offset"Virtual"
Page #"Virtual Address:!

Access!
Error!

>"PageTableSize"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access!
Error!

Physical"
Page #"

stack"

Summary: Two-Level Paging!
1111 1111!

stack"

heap"

code"

data"

Virtual memory view!

0000 0000!

0100 0000!

1000 0000!

1100 0000!

page1 #" offset!

Physical memory view!

data"

code"

heap"

stack"

0000 0000!
0001 0000!

0101 000!

0111 000!

1110 0000!

page2 #"

111 !
110 null!
101 null!
100 !
011 null!
010 !
001 null!
000 !

11 11101 !
10 11100!
01 10111!
00 10110!

11 01101 !
10 01100!
01 01011!
00 01010!

11 00101 !
10 00100!
01 00011!
00 00010!

11 null !
10 10000!
01 01111!
00 01110!

Page Tables!
(level 2)!

Page Table!
(level 1)!

1111 0000!

What happens when …!
virtual address!

MMU"
PT"

instruction"

physical address!
page#"

frame#"

offset"page fault"

Operating System"

exception"

Page Fault Handler"

load page from disk"

update PT entry"

Process"

scheduler"

retry"

I/O & Storage Layers – Today

10/17/14 cs162 fa14 L21! 16

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations and Interface

fopen, fread, fgets, …, fwrite, fclose on FILE *

open, read, write, close on int & char *

EAX, EBX, … ESP

ld, st PIO ctrl regs, dma

Recall: Components of a File System

10/24/14 cs162 fa14 L24! 17

Directory
Structure

File path

File Index
Structure

File number

…

Data blocks

I/O & Storage Layers

10/17/14 cs162 fa14 L21! 18

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

…

Data blocks

#4 - handle

Directory Structure

I/O Performance!

Response Time = Queue + I/O device service time"

User"
Thread"

Queue"
[OS Paths]"

C
ontroller"

I/O"
device"

•  Solutions?!
– Make everything faster J!
– More Decoupled (Parallelism) systems!

» multiple independent buses or controllers!
–  Optimize the bottleneck to increase service rate!

»  Use the queue to optimize the service!
–  Do other useful work while waiting!

•  Queues absorb bursts and smooth the flow!
•  Admissions control (finite queues)!

–  Limits delays, but may introduce unfairness and livelock!

100%"

Response"
Time (ms)"

Throughput (Utilization)"
(% total BW)"

0"

100"

200"

300"

0%"

Little’s Law

•  In any stable system
–  Average arrival rate = Average departure rate

•  the average number of tasks in the system (N) is equal to
the throughput (B) times the response time (L)

•  N (ops) = B (ops/s) x L (s)
•  Regardless of structure, bursts of requests,

variation in service
–  instantaneous variations, but it washes out in the average
–  Overall requests match departures

10/13/14 cs162 fa14 L19! 20

arrivals departures N
B

L

File System Summary (1/2)!
•  File System:!

–  Transforms blocks into Files and Directories!
–  Optimize for size, access and usage patterns!
–  Maximize sequential access, allow efficient random access!
–  Projects the OS protection and security regime (UGO vs ACL)!

•  File defined by header, called “inode”!
•  Multilevel Indexed Scheme!

–  inode contains file info, direct pointers to blocks, indirect blocks, doubly
indirect, etc..!

–  NTFS uses variable extents, rather than fixed blocks, and tiny files data is
in the header!

•  4.2 BSD Multilevel index files!
–  Inode contains pointers to actual blocks, indirect blocks, double indirect

blocks, etc. !
–  Optimizations for sequential access: start new files in open ranges of free

blocks, rotational Optimization!

!

10/27/14 cs162 fa14 L25! 21

File System Summary (2/2)!
•  Naming: act of translating from user-visible names to

actual system resources!
–  Directories used for naming for local file systems!
–  Linked or tree structure stored in files!

•  File layout driven by freespace management!
–  Integrate freespace, inode table, file blocks and directories into block

group!
•  Copy-on-write creates new (better positioned) version of

file upon burst of writes!
•  Deep interactions between memory management, file

system, and sharing!
!

10/27/14 cs162 fa14 L25! 22

Mid Term III

12/10/14 UCB CS162 Fa14 L1! 23

Using Paging to mmap files!
virtual address!

MMU" PT"
"
"
"
"
"

instruction"

physical address!
page#"

frame#"

offset"
page fault"

Operating System"

Page Fault Handler"

Process"

scheduler"
File

mmap file to region of VAS

Create PT entries"
for mapped region"
as “backed” by file"

10/27/14 cs162 fa14 L25! 24

Sharing through Mapped Files!

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

10/27/14 cs162 fa14 L25! 25

Reliability and Availability
•  A system is reliable if it performs its intended

function.
•  A system is available if it currently can respond

to a request.

•  A storage system’s reliability is the probability
that it will continue to be reliable for some
specified period of time.

•  Its availability is the probability that it will be
available at any given time.

10/27/14 cs162 fa14 L25! 26

Definitions
•  A system is reliable if it performs its intended

function.
•  A system is available if it currently can respond

to a request.

•  A storage system’s reliability is the probability
that it will continue to be reliable for some
specified period of time.

•  Its availability is the probability that it will be
available at any given time.

10/27/14 cs162 fa14 L25! 27

The ACID properties of Transactions!

•  Atomicity: all actions in the transaction happen, or
none happen!

•  Consistency: transactions maintain data integrity,
e.g.,

–  Balance cannot be negative
–  Cannot reschedule meeting on February 30!

•  Isolation: execution of one transaction is isolated
from that of all others; no problems from
concurrency!

•  Durability: if a transaction commits, its effects persist
despite crashes!

Achieving File System Reliability
•  Problem posed by machine/disk failures
•  Transaction concept
•  Approaches to reliability

–  Careful sequencing of file system operations
–  Copy-on-write (WAFL, ZFS)
–  Journalling (NTFS, linux ext4) – Transactions within file system
–  Log structure (flash storage) – Transactions for user data too

•  Approaches to availability
–  RAID

Reliability Approach #2:
Copy on Write File Layout
•  To update file system, write a new version of the

file system containing the update
–  Never update in place
–  Reuse existing unchanged disk blocks

•  Seems expensive! But
–  Updates can be batched
–  Almost all disk writes can occur in parallel

•  Approach taken in network file server appliances
(WAFL, ZFS)

Redo Logging
•  Prepare

– Write all changes
(in transaction) to
log

•  Commit
– Single disk write to

make transaction
durable

•  Redo
– Copy changes to

disk
•  Garbage collection

– Reclaim space in
log

•  Recovery
– Read log
– Redo any

operations for
committed
transactions

– Garbage collect log

Ex: Creating a file (as a transaction)
•  Find free data block(s)
•  Find free inode entry
•  Find dirent insertion point

•  Write map (used)
•  Write inode entry to point

to block(s)
•  Write dirent to point to

inode

10/27/14 cs162 fa14 L25! 32

Data blocks

Free
Space
map …

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

head tail

pending done

st
ar

t

co
m

m
it

Performance
•  Log written sequentially

–  Often kept in flash storage

•  Asynchronous write back
–  Any order as long as all changes are logged before commit,

and all write backs occur after commit

•  Can process multiple transactions
–  Transaction ID in each log entry
–  Transaction completed iff its commit record is in log

Two-Phase Locking (2PL)

1) Each transaction must obtain:
–  S (shared) or X (exclusive) lock on data before reading,
–  X (exclusive) lock on data before writing

2) A transaction can not request additional locks once
it releases any locks

Thus, each transaction has a “growing phase” followed
by a “shrinking phase”

0"
1"
2"
3"
4"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19"

Lo

ck
s

H
el

d"

Time!

Growing"
Phase"

Shrinking"
Phase"

Lock Point!"

Avoid deadlock 
by acquiring locks 
in some  
lexicographic order"

What’s a Deadlock?

•  Situation where all entities (e.g., threads, clients, …)
–  have acquired certain resources and
–  need to acquire additional resources,
–  but those additional resources are held some other entity that won’t

release them

11/21/14 cs162 fa14 L35! 35

Summary: Deadlock!
•  Four conditions for deadlocks!

– Mutual exclusion!
» Only one thread at a time can use a resource!

– Hold and wait!
»  Thread holding at least one resource is waiting to acquire

additional resources held by other threads!
– No preemption!

» Resources are released only voluntarily by the threads!
– Circular wait!

»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern!
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
– Deadlock: circular waiting for resources!

•  Deadlock detection and preemption!
•  Deadlock prevention !

– Loop Detection, Banker’s algorithm!11/21/14 cs162 fa14 L3! 36

Methods for Handling Deadlocks!
•  Deadlock prevention: design system to ensure that it

will never enter a deadlock!
–  E.g., monitor all lock acquisitions!
–  Selectively deny those that might lead to deadlock!

•  Allow system to enter deadlock and then recover!
–  Requires deadlock detection algorithm !

»  E.g., Java JMX findDeadlockedThreads()!
–  Some technique for forcibly preempting resources and/or

terminating tasks!

•  Ignore the problem and hope that deadlocks never
occur in the system!

–  Used by most operating systems, including UNIX!
–  Resort to manual version of recovery!

11/21/14 cs162 fa14 L35! 37

Techniques for Deadlock Prevention
•  Eliminate the Shared Resources
•  Eliminate the Mutual Exclusion
•  Eliminate Hold-and-Wait
•  Permit pre-emption
•  Eliminate the creation of circular wait

–  Dedicated resources to break cycles
–  Ordering on the acquisition of resources

11/21/14 cs162 fa14 L35! 38

Ordered Acquisition to prevent cycle from
forming

•  Suppose everyone grabs lowest first
•  Dependence graph is acyclic
•  Someone will fail to grab chopstick 0 !
•  How do you modify the rule to retain fairness ?
•  OS: define ordered set of resource classes

–  Acquire locks on resources in order
–  Page Table => Memory Blocks => …

11/21/14 cs162 fa14 L35! 39

0

1

2

3

4

Two-Phase Locking (2PL)!
•  2PL guarantees that the dependency graph of a

schedule is acyclic.
•  For every pair of transactions with a conflicting lock,

one acquires it first à ordering of those two à total
ordering.

•  Therefore 2PL-compatible schedules are conflict
serializable.

•  Note: 2PL can still lead to deadlocks since locks are
acquired incrementally.

•  An important variant of 2PL is strict 2PL, where all
locks are released at the end of the transaction.

Transaction Isolation

•  grep appears either before or after move
•  Need log/recover AND 2PL to get ACID

10/27/14 cs162 fa14 L25! 41

Process A:
LOCK x, y
move foo from dir x to dir

y
mv x/foo y/!

Commit and Release x, y!

Process B:
LOCK x, y and log
grep across x and y
 grep 162 x/* y/* > log!
Commit and Release x, y, log!

Banker’s Algorithm Example!

•  Banker’s algorithm with dining philosophers!
– “Safe” (won’t cause deadlock) if when try to grab

chopstick either:!
» Not last chopstick!
»  Is last chopstick but someone will have  

two afterwards!
– What if k-handed philosophers? Don’t allow if:!

»  It’s the last one, no one would have k!
»  It’s 2nd to last, and no one would have k-1!
»  It’s 3rd to last, and no one would have k-2!
» …!

11/21/14 cs162 fa14 L35! 42

What Is A Protocol?!

•  A protocol is an agreement on how to
communicate!

•  Includes!
–  Syntax: how a communication is specified & structured!

»  Format, order messages are sent and received!
–  Semantics: what a communication means!

»  Actions taken when transmitting, receiving, or when a
timer expires!

Network System Modularity!
Like software modularity, but:!
•  Implementation distributed across many machines

(routers and hosts)!
•  Must decide:!

–  How to break system into modules:!
»  Layering!

–  What functionality does each module implement:!
»  End-to-End Principle: don’t put it in the network if you can do

it in the endpoints.!

•  Partition the system!
–  Each layer solely relies on services from layer below !
–  Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
–  Hides implementation details!
–  Layers can change without disturbing other layers!

The E2E Concept
•  Traditional Engineering Goal: design the

infrastructure to meet application requirements
–  Optimizing for Cost, Reliability, Performance, …

•  Challenge: infrastructure is most costly & difficult to
create and evolves most slowly

–  Applications evolve rapidly, as does technology

•  End-to-end Design Concept
–  Utilize intelligence at the point of application
–  Infrastructure need not meet all application requirements directly
–  Only what the end-points cannot reasonably do themselves

»  Avoid redundancy, semantic mismatch, …
–  Enable applications and incorporate technological advance

•  Design for Change! - and specialization
–  Layers & protocols

11/12/14 UCB CS162 Fa14 L32! 45

Internet Protocol (IP)!
•  Internet Protocol: Internet’s network layer!
•  Service it provides: “Best-Effort” Packet Delivery!

–  Tries it’s “best” to deliver packet to its destination !
–  Packets may be lost!
–  Packets may be corrupted!
–  Packets may be delivered out of order!

source" destination"

IP network"

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 46

The Internet Hourglass!

Data Link"

Physical"

Applications"

The Hourglass Model!

Waist"

There is just one network-layer protocol, IP"
The “narrow waist” facilitates interoperability"

SMTP" HTTP" NTP"DNS"

TCP" UDP"

IP"

Ethernet" SONET" 802.11"

Transport"

Fiber"Copper" Radio"

11/12/14 UCB CS162 Fa14 L32! 47

Internet Layering – engineering for
intelligence and change!

101010100110101110"

Transport
Layer "

Trans.
Hdr.

Network
Layer "

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer "

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer "

Data"

Data"

Data"

Data"
Application

Layer
Any distributed protocol"
(e.g., HTTP, Skype, p2p, "
 KV protocol in your project)"

Send bits to other node directly "
connected to same physical "
network"

Send frames to other node "
directly connected to same "
physical network"
"

Send packets to another node "
possibly located in a different "
network"
"

Send segments to another"
process running on same or"
different node"

Internet Architecture: The Five Layers!

•  Lower three layers implemented everywhere!
•  Top two layers implemented only at hosts!
•  Logically, layers interacts with peer’s

corresponding layer!

Transport!
Network!
Datalink!
Physical!

Transport!
Network!
Datalink!
Physical!

Network!
Datalink!
Physical!

Application! Application!

Host A! Host B!Router!

11/12/14 UCB CS162 Fa14 L32! 49

Layering: Packets in Envelopes!

101010100110101110"
Physical

Layer "
Physical

Layer "101010100110101110"

Datalink
Layer "

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer "

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr. Data" Data"

Network
Layer "

Trans.
Hdr.

Net.
Hdr.

Network
Layer "

Trans.
Hdr.

Net.
Hdr. Data" Data"

Transport
Layer "

Trans.
Hdr.

Transport
Layer "

Trans.
Hdr. Data" Data"

Data"
Application

Layer
Application

Layer Data"

11/12/14 UCB CS162 Fa14 L32! 50

Internet Transport Protocols!
•  Datagram service (UDP)!

–  No-frills extension of “best-effort” IP!
–  Multiplexing/Demultiplexing among processes!

•  Reliable, in-order delivery (TCP)!
–  Connection set-up & tear-down!
–  Discarding corrupted packets (segments)!
–  Retransmission of lost packets (segments)!
–  Flow control!
–  Congestion control!

•  Services not available!
–  Delay and/or bandwidth guarantees!
–  Sessions that survive change-of-IP-address!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 51

Transport Layer (4)!
•  Service:!

–  Provide end-to-end communication between processes!
– Demultiplexing of communication between hosts!
–  Possible other services:!

»  Reliability in the presence of errors!
»  Timing properties!
»  Rate adaption (flow-control, congestion control)!

•  Interface: send message to “specific process” at
given destination; local process receives
messages sent to it!

–  How are they named?!

•  Protocol: port numbers, perhaps implement
reliability, flow control, packetization of large
messages, framing!

•  Prime Examples: TCP and UDP!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 52

Sockets in concept

9/10/14 cs162 fa14 L5! 53

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Accept connection

read request

write response

Close Connection
Socket

Close Server Socket

Connection Socket child

Close Connection
Socket

Close Listen Socket
Parent

Open Connection: 3-Way Handshaking!
•  If it has enough resources, server calls accept() to accept

connection, and sends back a SYN ACK packet containing!
–  Client’s sequence number incremented by one, (x + 1)!

»  Why is this needed? !
–  A sequence number proposal, y, for first byte server will send!

Client (initiator)! Server!

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!

ACK, Ack = y + 1!

Active  
Open!

Passive  
Open!

connect()! listen()!

accept()!

allocate  
buffer space!

tim
e"

Recall: Connecting API to Protocol

11/12/14 UCB CS162 Fa14 L32!
55

Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

Accept connection

read request

Connection Socket

write request

write response

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!
ACK, Ack = y + 1!

tim
e"

Stop & Wait w/o Errors!
•  Send; wait for ack; repeat!
•  RTT: Round Trip Time (RTT): time it takes a packet to

travel from sender to receiver and back!
–  One-way latency (d): one way delay from sender and receiver !

ACK 1

Time

Sender Receiver
1"

2"

ACK 2

3"

RTT

RTT

RTT = 2*d "
(if latency is "
 symmetric)"

d

11/12/14 UCB CS162 Fa14 L32! 56

Sliding Window!
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ACK’d packet of sender without
gap; then window of sender = {A+1, A+2, …, A+n}  

! !!
•  Sender can send packets in its window 

! !!
•  Let B be the last received packet without gap by

receiver, then window of receiver = {B+1,…, B+n}  
! !!

•  Receiver can accept out of sequence, if in window!

11/12/14 UCB CS162 Fa14 L32! 57

Sliding Window w/o Errors!
•  Throughput = W*packet_size/RTT

Time"

Window size (W) = 3 packets"

Sender" Receiver"

1"{1}"
2"{1, 2}"
3"{1, 2, 3}"
4"{2, 3, 4}"
5"{3, 4, 5}"

Unacked packets "
in sender’s window"

Out-o-seq packets"
in receiver’s window"

{}"

6"{4, 5, 6}"
."
."
."

."

."

."

{}"
{}"

11/12/14 UCB CS162 Fa14 L32! 58

Example: Sliding Window w/o Errors!
•  Assume !

–  Link capacity, C = 1Gbps!
–  Latency between end-hosts, RTT = 80ms!
–  packet_length = 1000 bytes !

•  What is the window size W to match link’s capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity) x delay (RTT/2)"

11/12/14 UCB CS162 Fa14 L32! 59

Remember Little’s Law !

Bandwidth-Delay
Product

GBN Example with Errors!
Window size (W) = 3 packets"

Sender" Receiver"

1"
2"
3"
4"
5"

{}"
{}"
{}"

6"
{5}"
{5,6}"

4 is "
missing"Timeout"

Packet 4"

4"
5"
6" {}"

Why doesn’t sender
retransmit packet 4

here?"Assume
packet 4 lost!"

Out-o-seq packets"
in receiver’s window"

NACK 4

NACK 4

11/12/14 UCB CS162 Fa14 L32! 60

TCP Flow Control!
•  TCP: sliding window protocol at byte (not

packet) level!
– Go-back-N: TCP Tahoe, Reno, New Reno!
–  Selective Repeat (SR): TCP Sack !

•  Receiver tells sender how many more bytes it
can receive without overflowing its buffer!

– the AdvertisedWindow!
•  The ACK contains sequence number N of next

byte the receiver expects, !
–  receiver has received all bytes in sequence up to and

including N-1!

TCP Flow Control!

•  Three pairs of producer-consumer’s!
①  sending process à sending TCP!
②  Sending TCP à receiving TCP!
③  receiving TCP à receiving process!

Sending Process! Receiving Process!

TCP layer" TCP layer"

IP layer" IP layer"
OS"

"
"1"

"
"2"

"
"3"

Recap: TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

 NextByteExpected(201)!LastByteRcvd(350)!

101, 350"201, 350"

Data[1,100]"{[1,100]}"
{[1,100]}"

201,
300"

{[1,300]}" Data[201,300]"

301,
350"

{101, 300}"

Data[101,200]"{[1,200]}"
{[101,200]}"

101,
200"

Data[301,350]"{[201,350]}"
{[101,200],[301,350]}"

301,
350"

LastByteSent(350)!

301,
350"

Ack=201, AdvWin = 50"{201, 350}"

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)!

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)!

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)!

Summary: Reliability & Flow Control!

•  Flow control: three pairs of producer consumers!
–  Sending process à sending TCP!
–  Sending TCP à receiving TCP!
–  Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new
data the receiver can buffer!

•  SenderWindow: specifies how more the sender
can transmit.!

•  Depends on AdvertisedWindow and on data sent since
sender received AdvertisedWindow!

•  WriteWindow: How much more the sending
application can send to the sending OS!

Review: Remote Procedure Call

10/27/14 cs162 fa14 L25! 65

Client"
(caller)"

Server"
(callee)"

Packet"
Handler"

Packet"
Handler"

call!

return!

send!

receive!

send!

receive!

return!

call!

N
etw

ork!N
et

w
or

k!

Client"
Stub"

marshal args!

marshal args!
!

unmarshal!
ret vals!

Server"
Stub"

unmarshal!
ret vals!

!

Machine A!

Machine B!

Six steps
1.  The client calls the client stub. The call is a local

procedure call, with parameters pushed on to the
stack in the normal way.

2.  The client stub packs the parameters into a
message and makes a system call to send the
message. Packing the parameters is called
marshalling.

3.  The client's local operating system sends the
message from the client machine to the server
machine.

4.  The local operating system on the server machine
passes the incoming packets to the server stub.

5.  The server stub unpacks the parameters from the
message. Unpacking the parameters is called
unmarshalling.

6.  Finally, the server stub calls the server procedure.
The reply traces the same steps in the reverse
direction

10/27/14 cs162 fa14 L25! 66

Motivation for RPC
•  RPC’s can be used to communicate between

processes on different machines or the same
machine!

–  Services can be run wherever it’s most appropriate!
–  Access to local and remote services looks the same!
–  Fault isolation: bugs are more isolated (build a firewall)!
–  Enforces modularity: allows incremental upgrades of pieces

of software (client or server)!
–  Location transparent: service can be local or remote!

10/27/14 cs162 fa14 L25! 67

Review: Schematic View of NFS
Architecture

12/10/14 CS162 Fa14 L30! 68

Layering

RPC stubs

Marshaling

Goals of NFS
•  Transparent File Access

–  Programs access remote files in the same way as local files
–  Programs cannot tell which file system is being used

•  Simple Crash Recovery
–  When file server crashes
–  When client crashes
–  When network is down

•  Adequate Performance
–  Not slower than other network utilities, e.g., rcp
–  Original NFS paper sets the goal 80% as fast as local disk

12/10/14 CS162 Fa14 L30! 69

Transparent File Access
•  Don’t need to use different APIs for different file

systems
–  Provide UNIX file system interface

»  open(), read(), write(), close(), mkdir(), etc.

•  Don’t need to know which file system is being
used

–  Virtual File System and vnode
»  Abstraction layer for multiple file systems, including NFS

•  Don’t need to provide file-system-specific
parameters during file operation

–  The idea of “early binding” doing mount
–  For NFS

»  Client only specifies server hostname when mounting the
NFS

»  No need to know hostname while working on files

12/10/14 CS162 Fa14 L30! 70

NFS Design Principles

12/10/14 CS162 Fa14 L30! 71

•  Stateless protocol: A protocol in which all information
required to process a request is passed with request!

–  Server keeps no state about client"
–  Thus, if server crashed and restarted, requests can continue where left off (in

many cases)"
•  Idempotency: Performing requests multiple times has

same effect as performing it exactly once, e.g., writing
value to memory.!

–  If server’s response doesn’t come back to client (e.g., network failure, server
crashes and restarts)"

–  Client simply retries the same request, which will have the same effect."
–  Even if the server already did the job, it can re-do it because of idempotency."

The Shared Storage Abstraction
•  Information (and therefore control) is

communicated from one point of computation to
another by

–  The former storing/writing/sending to a location in a shared
address space

–  And the second later loading/reading/receiving the contents
of that location

•  Memory (address) space of a process
•  File systems
•  Dropbox, …
•  Google Docs, …
•  Facebook, …

11/12/14 UCB CS162 Fa14 L32! 72

What are you assuming?
•  Writes happen

–  Eventually a write will become visible to readers
–  Until another write happens to that location

•  Within a sequential thread, a read following a write
returns the value written by that write

–  Dependences are respected
–  Here a control dependence
–  Each read returns the most recent value written to the location

•  A sequence of writes will be visible in order
–  Control dependences
–  Data dependences
–  May not see every write, but the ones seen are consistent with

order written

•  A readers see a consistent order
–  It is as if the total order was visible to all and they took samples

11/12/14 UCB CS162 Fa14 L32! 73

Basic solution to multiple client
replicas
•  Enforce single-writer multiple reader discipline
•  Allow readers to cache copies
•  Before an update is performed, writer must gain

exclusive access
•  Simple Approach: invalidate all the copies then

update
•  Who keeps track of what?

11/12/14 UCB CS162 Fa14 L32! 74

The Multi-processor/Core case

11/12/14 UCB CS162 Fa14 L32! 75

Proc

Memory

Cache

•  Interconnect is a broadcast medium
•  All clients can observe all writes and invalidate

local replicas (write-thru invalidate protocol)

Proc

Cache

Proc

Cache

The Multi-processor/Core case

11/12/14 UCB CS162 Fa14 L32! 76

Proc

Memory

Cache

•  Write-Back via read-exclusive
•  Atomic Read-modify-write

Proc

Cache

Proc

Cache

NFS “Eventual” Consistency

11/12/14 UCB CS162 Fa14 L32! 77

Client

Storage
Server

Cache

•  Stateless server allows multiple cached copies
–  Files written locally (at own risk)

•  Update Visibility by “flush on close”
•  GetAttributes on file ops to check modify since cache

Client

Cache

Client

Cache

Flush on Close

GetAttr on files

NFS Caching Consistency

12/10/14 CS162 Fa14 L30! 78

•  NFS protocol: weak consistency!
–  Client polls server periodically to check for changes!

»  Polls server if data hasn’t been checked in last 3-30 seconds (exact
timeout it tunable parameter).!

»  Thus, when file is changed on one client, server is notified, but other
clients use old version of file until timeout.!

!
What if multiple clients write to same file? !

»  In NFS, can get either version (or parts of both)!
»  Completely arbitrary!!

cache"
F1:V2"

Server"
Client 1"

cache"

Client 2"

cache"

F1:V1"

F1:V2"

F1:V2"

F1 still ok?"

No: (F1:V2)"

Naming!
•  Naming choices:!

–  Hostname:localname: Name files explicitly!
»  No location or migration transparency!

–  Mounting of remote file systems!
»  System manager mounts remote file system  

by giving name and local mount point!
»  Transparent to user: all reads and writes  

look like local reads and writes to user  
e.g. /users/sue/foo→/sue/foo on server!

–  A single, global name space: every file  
in the world has unique name!

»  Location Transparency: servers  
can change and files can move  
without involving user!

mount"
coeus:/sue"

mount"
adj:/prog"

mount"
adj:/jane"

Key Value Store
•  Handle huge volumes of data, e.g., PBs

–  Store (key, value) tuples
–  Used sometimes as a simpler but more scalable “database”
–  Also called Distributed Hash Tables (DHT)

•  Simple interface
–  put(key, value); // insert/write “value” associated with “key”
–  value = get(key); // get/read data associated with “key”

•  partition set of key-values across many
 machines

key, value

…"

Challenges

•  Fault Tolerance: handle machine failures without
losing data and without degradation in performance

•  Scalability:
–  Need to scale to thousands of machines
–  Need to allow easy addition of new machines

•  Consistency: maintain data consistency in face of
node failures and message losses

•  Heterogeneity (if deployed as peer-to-peer systems):
–  Latency: 1ms to 1000ms
–  Bandwidth: 32Kb/s to 100Mb/s

…"

Discussion: Iterative vs. Recursive Query

•  Recursive Query:
–  Advantages:

»  Faster, as typically master/directory closer to nodes
»  Easier to maintain consistency, as master/directory can

serialize puts()/gets()
–  Disadvantages: scalability bottleneck, as all “Values” go through

master/directory

•  Iterative Query
–  Advantages: more scalable
–  Disadvantages: slower, harder to enforce data consistency

…"

N1" N2" N3" N50"

K14" V14"

K14" N3"

Master/Directory"

get(K14)"
V14"

…"

N1" N2" N3" N50"

K14" V14"

K14" N3"

Master/Directory"
get(K14)"

V14"
N3"

Recursive" Iterative"

Fault Tolerance
•  Replicate value on several nodes
•  Usually, place replicas on different racks in a

datacenter to guard against rack failures

…"

N1" N2" N3" N50"

K5" V5" K14" V14" K105"V105"

K5" N2"
K14" N1,N3 "
K105"N50"

Master/Directory"
put(K14, V14)"

N1, N3"

K14" V14"

put(K14, V14)"

Two Phase (2PC) Commit!
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then all

nodes COMMIT!
–  Otherwise ABORT at all nodes!

!

•  Developed by Turing award winner Jim Gray
(first Berkeley CS PhD, 1969)!

!

2PC Algorithm!
•  One coordinator !
•  N workers (replicas) !

•  High level algorithm description!
–  Coordinator asks all workers if they can commit!

–  If all workers reply “VOTE-COMMIT”, then coordinator
broadcasts “GLOBAL-COMMIT”, !

!Otherwise coordinator broadcasts “GLOBAL-ABORT”!
–  Workers obey the GLOBAL messages!

Failure Free Example Execution!

coordinator	

worker	
 1	

.me	

VOTE-­‐
REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
COMMIT	

worker	
 2	

worker	
 3	

Detailed Algorithm!

Coordinator	
 sends	
 VOTE-­‐REQ	
 to	
 all	

workers	

–  Wait	
 for	
 VOTE-­‐REQ	
 from	
 coordinator	

–  If	
 ready,	
 send	
 VOTE-­‐COMMIT	
 to	

coordinator	

–  If	
 not	
 ready,	
 send	
 VOTE-­‐ABORT	
 to	

coordinator	

–  And	
 immediately	
 abort	

–  If	
 receive	
 VOTE-­‐COMMIT	
 from	
 all	
 N	

workers,	
 send	
 GLOBAL-­‐COMMIT	
 to	

all	
 workers	

–  If	
 doesn’t	
 receive	
 VOTE-­‐COMMIT	

from	
 all	
 N	
 workers,	
 send	
 GLOBAL-­‐
ABORT	
 to	
 all	
 workers	

–  If	
 receive	
 GLOBAL-­‐COMMIT	
 then	

commit	

–  If	
 receive	
 GLOBAL-­‐ABORT	
 then	
 abort	

Coordinator Algorithm! Worker Algorithm!

Example of Worker Failure!

coordinator	

worker	
 1	

.me	

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
ABORT	

INIT	

WAIT	

ABORT	
 COMM	
 .meout	

worker	
 2	

worker	
 3	

Durability!
•  All nodes use stable storage* to store which state they

are in!

•  Upon recovery, it can restore state and resume:!
–  Coordinator aborts in INIT, WAIT, or ABORT!
–  Coordinator commits in COMMIT!
–  Worker aborts in INIT, ABORT!
–  Worker commits in COMMIT!
–  Worker asks Coordinator in READY!

* - stable storage is non-volatile storage (e.g. backed by
disk) that guarantees atomic writes. !

Multiple Servers

•  What happens if cannot update all the replicas?
•  Availability => Inconsistency

11/12/14 UCB CS162 Fa14 L32! 90

Client

Storage
Server

Storage
Server

Consistency (cont’d)
•  If concurrent updates (i.e., puts to same key) may need to

make sure that updates happen in the same order

…"

N1" N2" N3" N50"

K5" V5" K14" V14" K105"V105"

K5" N2"
K14" N1,N3 "
K105"N50"

Master/Directory"
put(K14, V14’)"

put(K14, V14’)"

K14" V14"

put(K14, V14’’)"

put(K14, V14’')"

K14" V14’’"K14" V14’"

•  put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order"

•  What does get(K14) return?"
•  Undefined!"

Consistency
•  Need to make sure that a value is replicated

correctly

•  How do you know a value has been replicated on
every node?

–  Wait for acknowledgements from every node

•  What happens if a node fails during replication?
–  Pick another node and try again

•  What happens if a node is slow?
–  Slow down the entire put()? Pick another node?

•  In general, with multiple replicas
–  Slow puts and fast gets

Consistency (cont’d)
•  Large variety of consistency models:

–  Atomic consistency (linearizability): reads/writes (gets/puts) to
replicas appear as if there was a single underlying replica (single
system image)

»  Think “one updated at a time”
»  Transactions

–  Eventual consistency: given enough time all updates will propagate
through the system

»  One of the weakest form of consistency; used by many systems
in practice

–  And many others: causal consistency, sequential consistency, strong
consistency, …

Scaling Up Directory

•  Challenge:
–  Directory contains a number of entries equal to number of

(key, value) tuples in the system
–  Can be tens or hundreds of billions of entries in the system!

•  Solution: consistent hashing
•  Associate to each node a unique id in an uni-

dimensional space 0..2m-1
–  Partition this space across m machines
–  Assume keys are in same uni-dimensional space
–  Each (Key, Value) is stored at the node

 with the smallest ID larger than Key
4

20

32 35

8

15

44

58

14! V14!

63 0

The Data Center as a System
•  Clusters became THE architecture for large scale

internet services
–  Distribute disks, files, I/O, net, and compute over

everything
–  Massive AND Incremental scalability

•  Search Engines the initial “Killer App”
•  Multiple components as Cluster Apps

–  Web crawl, Index, Search & Rank, Network, …

•  Global Layer as a Master/Worker pattern
–  GFS, HDFS

•  Map Reduce framework address core of search
on massive scale – and much more

–  Indexing, log analysis, data querying
–  Collating, inverted indexes : map(k,v) => f(k,v),(k,v)
–  Filtering, Parsing, Validation
–  Sorting

12/1/14 UCB CS162 Fa14 L39! 95

Lessons from Giant-Scale Services, Eric Brewer, IEEE Computer, Jul 2001

GFS/HDFS Insights !
•  Petabyte storage!

–  Files split into large blocks (128 MB) and replicated across many nodes!
–  Big blocks allow high throughput sequential reads/writes!

•  Data striped on hundreds/thousands of servers!
–  Scan 100 TB on 1 node @ 50 MB/s = 24 days!
–  Scan on 1000-node cluster = 35 minutes!

•  Failures will be the norm
–  Mean time between failures for 1 node = 3 years
–  Mean time between failures for 1000 nodes = 1 day

•  Use commodity hardware
–  Failures are the norm anyway, buy cheaper hardware

•  No complicated consistency models
–  Single writer, append-only data

12/1/14 UCB CS162 Fa14 L39! 96

MapReduce Insights!
•  Restricted key-value model!

–  Same fine-grained operation (Map & Reduce) repeated on huge,
distributed (within DC) data!

–  Operations must be deterministic!
–  Operations must be idempotent/no side effects!
–  Only communication is through the shuffle!
–  Operation (Map & Reduce) output saved (on disk)!

12/1/14 UCB CS162 Fa14 L39! 97

MapReduce Parallel Execution

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MapReduce Pros!
•  Distribution is completely transparent!

–  Not a single line of distributed programming (ease, correctness)!

•  Automatic fault-tolerance!
–  Determinism enables running failed tasks somewhere else again!
–  Saved intermediate data enables just re-running failed reducers!

•  Automatic scaling!
–  As operations as side-effect free, they can be distributed to any number of

machines dynamically!

•  Automatic load-balancing!
–  Move tasks and speculatively execute duplicate copies of slow tasks

(stragglers)!

12/1/14 UCB CS162 Fa14 L39! 99

MapReduce Cons!
•  Restricted programming model!

–  Not always natural to express problems in this model!
–  Low-level coding necessary!
–  Little support for iterative jobs (lots of disk access)!
–  High-latency (batch processing)!

•  Addressed by follow-up research and Apache
projects!

–  Pig and Hive for high-level coding!
–  Spark for iterative and low-latency jobs!

12/1/14 UCB CS162 Fa14 L39! 100

UCB / Apache Spark Motivation!

Complex jobs, interactive queries and online
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job!

Query 1"

Query 2"

Query 3"

Interactive mining!

Jo
b

1"

Jo
b

2"

…!

Stream processing!

12/1/14 UCB CS162 Fa14 L39! 101

Examples!

iter. 1" iter. 2" . . .!

Input!

HDFS 
read!

HDFS 
write!

HDFS 
read!

HDFS 
write!

Input!

query 1"

query 2"

query 3"

result 1!

result 2!

result 3!

. . .!

HDFS 
read!

Opportunity: DRAM is getting cheaper è use
main memory for intermediate  

results instead of disks"

12/1/14 UCB CS162 Fa14 L39! 102

Spark Motivation!
Complex jobs, interactive queries and online
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job!

Query 1"

Query 2"

Query 3"

Interactive mining!

Jo
b

1"

Jo
b

2"

…!

Stream processing!

Problem: in MR, the only way to share data
across jobs is using stable storage  

(e.g. file system) è slow!"

12/1/14 UCB CS162 Fa14 L39! 103

Security Requirements!
•  Authentication !

– Ensures that a user is who is claiming to be!

•  Data integrity !
– Ensure that data is not changed from source to

destination or after being written on a storage
device !

•  Confidentiality !
– Ensures that data is read only by authorized users!

•  Non-repudiation!
– Sender/client can’t later claim didn’t send/write data!
– Receiver/server can’t claim didn’t receive/write data!

!

Using Symmetric Keys !
•  Same key for encryption and decryption!
•  Achieves confidentiality!
•  Vulnerable to tampering and replay attacks!

Internet"Encrypt with"
secret key"

Decrypt with"
secret key"

Plaintext (m)" m"

Ciphertext"

Need integrity check and unique sequence number"

Name:
Passwd

^%$#$%$%^#
^%$#$%$%^#

Name:
Passwd

^%$#$%$%^#

Name:
Passwd

Simple Public Key Authentication!

•  Each side need only know the other
side’s public key!

–  No secret key need be shared!

•  A encrypts a nonce (random num.) x!
– Avoid replay attacks, e.g., attacker

impersonating client or server!

•  B proves it can recover x!

•  A can authenticate itself to B in the
same way with nonce, y!

•  Many more details to make this work
securely in practice! !

E({x, A}, PublicB)

E({x, y, B}, PublicA)

A B

Notation: E(m,k) –
encrypt message m
with key k"
"

E({y, A}, PublicB)

•  Browser constructs a random
session key K used for data
communication!

–  Private key for bulk crypto!
•  Browser encrypts K using

Amazon’s public key!
•  Browser sends E(K, KApublic) to server!
•  Browser displays!
•  All subsequent comm.

encrypted w/ symmetric
cipher (e.g., AES128) using
key K!

–  E.g., client can authenticate
using a password!

Browser" Amazon"

Here’s my cert!

~1 KB of data!

E(K, KApublic)"
K"

E(password …, K)"

E(response …, K)"

Agreed"

HTTPS Connection (SSL/TLS) cont’d!

K"

Security & Privacy in a Pervasive Web

108 12/1/14 UCB CS162 Fa14 L39!

