
HW 1: Initial Shell

Due: February 09, 2015

Contents

1 Setup 2

2 Using libc in the shell 2

3 A simple shell with Exec 2

4 Path resolution 3

5 Input/Output Redirection 3

6 Process Bookkeeping 3

7 Signal Handling 4

8 Foreground/Background processing 4

9 Autograder & Submission 4

1

CS 162 Spring 2015 HW 1: Initial Shell

1 Setup

The shell, e.g., bash, csh, or sh, is an application program that is so closely associated with the operating
system that most people think of it as part of the OS. But really the OS provides a clean abstraction for
accessing resources and manages sharing of those resources. The shell provides a command interpreter
and the ability to run programs on the OS. (Your starter shell gives a little sense of this by getting and
printing its process id (PID) along with that of its parent - a real shell.) In building one, you will get a
better sense of the user/system interface than you do from more typical applications.

In your vagrant vm

cd code/personal

git pull staff master

cd hw1

You will find starter code shell.c and a simple Makefile. You will notice the use of ”.h” files to provide
a rough C approximation to classes. A parser and a file for io operations have been included as well.

In order to run the shell:

make

./shell

In order to terminate the shell after it starts, either type quit or press ctrl-c.

2 Using libc in the shell

The skeleton shell has a dispatcher to support ’builtins’. This dispatch pattern shows up frequently in
operating systems; for example, it appears in vectoring syscalls to the appropriate kernel handler and in
vectoring interrupts to the interrupt handler. Here we do a look up to transfer control to a command
handler. So far the only two builtins supported are ? which brings up the help menu, and quit which
exits from the shell.

Programs normally access operating capabilities through the Standard C Library, libc. See, for
example, http://www.gnu.org/software/libc/manual/pdf/libc.pdf. To warm up, let’s make this shell a
little more interesting. Currently the prompt is just the command line number. Modify this to include
the current working directory (see man getcwd) in the prompt. Add a new built-in ’cd’ that changes
the current working directory. Test your program on all the relevant cases (and fix any bugs you may
find along the way.)

Check in your solution to this part. In your vagrant vm

git add .

git commit -m "Finished adding libc functionality into the shell."

git push personal master

3 A simple shell with Exec

You will notice that anything you type that is not a valid built-in results in a message that it doesn’t
know how to exec programs. Extend your shell of part 1 to fork a child process to execute the command
passing it the command line argument. You may find the functions defined in parse.c to be useful for
parsing command line input. In particular, you do not need to support delimiters not defined in parse.c
(eg. quotes, escape characters). For example:

2

CS 162 Spring 2015 HW 1: Initial Shell

kubi@dhcp-45-107:~/Classes/cs162/sp15/cs162git/ta/hw1$./shell

./shell running as PID 21799 under 17720

1 /Users/kubi/Classes/cs162/sp15/cs162git/ta/hw1: /usr/bin/wc shell.c

77 262 1843 shell.c

2 /Users/kubi/Classes/cs162/sp15/cs162git/ta/hw1: quit

Bye

Your book provides a rough guideline. Your shell should fork a child process which execs the exe-
cutable file. The parent shell process should wait until the subprocess completes.

Check in your solution to this part. In your vagrant vm

git add .

git commit -m "Finished creating child process to executes files."

git push personal master

4 Path resolution

You probably found that it was rather a pain to test your shell in the previous part because you had to
type the full pathname of every executable. Most operating systems provide an ”environment” in which
to resolve various names to their values. For example

echo $PATH

prints the search path that the shell uses to locate executables. It looks for the file in each directory on
the path, separated by ”:” and executes the first one that it finds. This process is called resolving the
path.

Modify your shell to access the PATH variable from the environment and use it to resolve executable
file names. Typing in the full pathname of the executable should still be supported. Do not use execvp.
Test your work and commit it.

5 Input/Output Redirection

When running programs, it is sometimes useful to be able to feed in input from a file or to write to a
file. The syntax [process] > [file] specifies to write the process’ output to the file. Similarly, the
syntax [process] < [file] specifies to feed in the contents of the file into the process. The commands
dup2 and strstr may be useful here.

Modfiy your shell so that we support redirecting stdin and stdout. Test your work and commit the
changes.

6 Process Bookkeeping

Not only do we want our shell to run programs, but we want it to keep track of programs that are
currently running, programs that have either been stopped or have terminated, and whether programs
hold the terminal or not.

Modify your shell so that whenever your shell runs a program, it creates a process struct and fills
in its appropriate fields. We have defined the process struct that you will be using for you.

Notice that we are not exactly changing the functionality of the shell at the moment, but this is
necessary for supporting background processes and process control, as you will implement below.

You also want to make sure that when a process is stopped or is completed, that its data structure
is updated to reflect that.

Test your work and commit it.

3

CS 162 Spring 2015 HW 1: Initial Shell

7 Signal Handling

To interrupt/pause/stop running processes we will use glibc’s signals. For example, CTRL-C sends
SIGKILL and CTRL-Z sends SIGSTOP. However, since our shell is running inside another shell, by de-
fault these signals are sent to our shell. This is not what we want, since for example attempting to stop
a process will also stop our shell. We want to ”ignore” the signals inside our shell’s process, and reenable
them for the processes that our shell spawns. Reading the linux man page for signal may be useful here.

You must also ensure that each process lies in its own process group. A process group is a collection
of one or more processes. Process groups are used to help control signal distribution: a signal that is
directed towards a process group is sent to all members of the group. We want to ensure that when our
shell spawns multiple processes, that if we send for example SIGSTOP, then we only stop the foreground
process. You may find the function setpgid to be useful.

Test your work and commit it.

8 Foreground/Background processing

Our shell so far runs each command to completion before allowing you to start the next. Many shells
allow you run a command in the background by putting an ”&” at the end of the command line. The
shell responds with the prompt and allows you to start more processes.

Modify your shell so that it runs commands that are terminated by an ”&” in the background. For
example, both

ls&, and
ls &

runs the ls command in the background. Backgrounding should be ignored for built-ins. Add three
new builtins:

wait; wait until all backgrounded jobs have terminated before returning to the prompt.
fg [pid]; Move the process with id pid to the foreground. If pid is not specified, then move the

most recently launched process to the foreground.
bg [pid]; Move the process with id pid to the background. If pid is not specified, then move the

most recently launched process to the background.
Additionally, if a process is in the foreground, we want that process to have control of the terminal.

Please modify your shell so that if a process is in the foreground, that process has control of the terminal.
When a process exits, then the shell regains control of the terminal. You may find the code already
defined in init_shell to be useful. You may also find the documentation for tcsetpgrp to be useful.

Test your work and commit the changes.

9 Autograder & Submission

To push to autograder do:

git add .

git commit -m "hw1 test"

git checkout -b ag/hw1

git push personal ag/hw1

Within a few minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza).

Now in order to finally submit your code, you need to push to the branch release

make clean

git add .

4

CS 162 Spring 2015 HW 1: Initial Shell

git commit -m "hw1 submission"

git checkout -b release/hw1

git push personal release/hw1

The reason we gave you two types of branches with an autograder, is that the ag/* are testing
branches, nothing on it will be graded whereas you must submit to release in order to get graded. So
please only push to release/* when you intend to submit.

5

	Setup
	Using libc in the shell
	A simple shell with Exec
	Path resolution
	Input/Output Redirection
	Process Bookkeeping
	Signal Handling
	Foreground/Background processing
	Autograder & Submission

