
CS 162 HW 4: kvfs

April 10, 2015

Contents

1 Overview 2

2 Setup 2

3 FUSE 3
3.1 VFS . 3
3.2 fuse.ko . 4
3.3 libfuse . 4
3.4 documentation . 5

4 kvfs 5
4.1 struct fnode . 5
4.2 struct kvfs . 5
4.3 .superblock . 5
4.4 tasks . 6

5 Testing 6

6 Mounting 6

7 Autograder & Submission 7

1

CS 162 Spring 2015 Homework 4: kvfs

1 Overview

Your task in this homework is to implement a simple file system. The file system you will implement will
not be general purpose like many of the file systems you have studied in class (ext2, fat32, ntfs, etc..).
Instead this file system will “optimize” for lots of small files (<1KB of data). Further more we will be
using the FUSE library to build this file system in user mode, saving you from painful kernel debugging.

This assignment will be due 11:59 pm PDT 04/27/2015

2 Setup

$ sudo apt-get install autoconf

$ cd code/personal

$ git checkout master

$ git pull staff master

$ cd hw4

You will find a simple skeleton in kvfs.c and kvfs.h. kvfs.c is where you will implement the bulk of
our file system operations. Currently you should be able to mount the file system and enter the folder
by running:

$ make

$ mkdir -p /tmp/test_sandbox

$./kvfs /tmp/test_sandbox

$ cd /tmp/test_sandbox

$ ls

$ touch hi

$ cat hi

$ echo "dog" > hi

$ cat hi

All the file system operations inside the newly mounted file system turn into no-ops (until you finish
this assignment).
To unmount the file system do:

$ fusermount -u /tmp/test_sandbox

2

CS 162 Spring 2015 Homework 4: kvfs

3 FUSE

Before you start the assignment it is imperative that you understand FUSE. FUSE is a userspace
filesystem framework. It consists of a kernel module (fuse.ko), a userspace library (libfuse) and a mount
utility (fusermount). FUSE allows users to write a file system completely in user mode, but allow those
user mode functions to be called through the traditional system call interface, which is the standard
interface used by your familiar tools cat, ls, touch, etc. A file system written in usermode will not be as
robust or high performance as kernel code, but it allows for extremely interesting applications and access
to user data that the kernel could never have. Popular FUSE file systems include: sshfs, gmailfs and
spotifyfs. Unfortunately we won’t be implementing anything nearly as cool as those three, but this
assignment will hopefully give you an appreciation for both FUSE and file systems in general.

Figure 1: An illustration of how fuse allows user level file systems [4]

So lets dive into the biggest chunk inside the above diagram (VFS) before going into how FUSE works it
magic.

3.1 VFS

The Virtual File System (also known as the Virtual Filesystem Switch) is the software layer in the kernel
that provides the filesystem interface to userspace programs. It also provides an abstraction within the
kernel which allows different filesystem implementations to coexist. VFS system calls open(2), stat(2),
read(2), write(2), chmod(2) and so on are called from a process context.[3]

The virtual filesystem switch is an abstraction layer on top of a more concrete file system. The purpose
of a VFS is to allow client applications to access different types of concrete file systems in a uniform way.
A VFS can, for example, be used to access local and network storage devices transparently without the
client application noticing the difference. It can be used to bridge the differences in Windows, Mac OS
and Unix filesystems, so that applications can access files on local file systems of those types without
having to know what type of file system they are accessing.

A VFS specifies an interface (or a “contract”) between the kernel and a concrete file system. Therefore, it
is easy to add support for new file system types to the kernel simply by fulfilling the contract. The terms

3

CS 162 Spring 2015 Homework 4: kvfs

of the contract might change incompatibly from release to release, which would require that concrete file
system support be recompiled, and possibly modified before recompilation, to allow it to work with a
new release of the operating system; or the supplier of the operating system might make only backward-
compatible changes to the contract, so that concrete file system support built for a given release of the
operating system would work with future versions of the operating system. [1]

As an aside, it is also important to understand that VFS is not a special/optional kernel module that is
used just for FUSE.

In fact every file system operation you ever make (in OSX and Linux), passes through the VFS switch,
2 is a pretty good illustration of the role of vfs.

Figure 2: VFS is a very general module used for every file system [2]

3.2 fuse.ko

In the kernel fuse acts as a regular file system like the ones in Figure 2 (ext2, dos, etc..). All the system
calls in kernel/file.c, kernel/inode.c, and kernel/dir.c delegate requests to the libfuse based user process
via message passing interface.

3.3 libfuse

libfuse is a user level daemon, that allows the user to define a struct fuse_operations. Each field in
the struct is function pointer that works very similarly to the well known UNIX file system operations.
All methods are optional, but some are essential for a useful filesystem (e.g. getattr).

4

CS 162 Spring 2015 Homework 4: kvfs

When your user mode program calls fuse_main() (lib/helper.c), fuse_main() parses the arguments
passed to your user mode program, then calls fuse_mount() (lib/mount.c). fuse_mount() creates a
UNIX domain socket pair, then forks and execs fusermount (util/fusermount.c) passing it one end of
the socket in the FUSE_COMMFD_ENV environment variable. fusermount (util/fusermount.c) makes sure
that the fuse module is loaded. fusermount then opens /dev/fuse and send the file handle over a UNIX
domain socket back to fuse_mount().

3.4 documentation

The fuse doxygen is an excellent resource to learn more about fuse. And will be an invaluable resource
for this assignment.

4 kvfs

With background about FUSE out of the way, we can get to the details of our assignment. For this
assignment you will write a very simple file system with constant file size, and a flat directory-less
structure.

4.1 struct fnode

Instead of storing the metadata and data for a file separately, kvfs will use a struct fnode to store
both the name of the file and all the data for the file. The data for the file will be a DATA_SIZE long
char array, stored in the field data. The name of the file will be a NAME_SIZE long char array, store in
the field name. There will also be an integer flag magic to check for valid/corrupt fnodes. Each file in
kvfs will be represented by exactly one struct fnode.

4.2 struct kvfs

The file system itself will be represented by struct kvfs. This struct will have 2 fields, a size field
denoting the number of active fnodes in your file system, and a size zero array of struct fnode.

4.3 .superblock

Your file system will delegate all reads and writes to a file .superblock that exists in the same directory
as the mountpoint 1 . The file .superblock will act as a “disk image” of sorts, and will be of constant size
as defined by the macro SUPERBLOCK_SIZE. If it doesn’t exist, this file will be automatically generated
and inflated to SUPERBLOCK_SIZE on mount. The .superblock file must persist between mounts, and
copying this file to another location will effectively clone the filesystem to that location. One copy of the
file .superblock will be a shared disk image for every mounted kvfs instance in the directory of that
.superblock file. Moving the .superblock file should have the appropriate effect to kvfs instances
mounted in the destination directory.

1A mount point is a directory (typically an empty one) in the currently accessible filesystem on which an additional
filesystem is mounted (i.e., logically attached).

5

http://fuse.sourceforge.net/doxygen/

CS 162 Spring 2015 Homework 4: kvfs

4.4 tasks

For this assignment the following shell commands must be appropriately functional inside your mounted
file system.

1. touch

2. cat

3. > (output redirection to a file)

4. < (input redirection from a file)

5. mv

6. rm

7. cp

Part of this assignment will be to figure out which file systems calls are necessary for the above shell
commands. The strace utility and the fuse mount flags -d,-s,-f will be extremely useful (note that
> and < are not programs, but shell builtins). The getattr function is necessary for any sort of file
system functionality, so we have implemented some of it for you. You may need to edit it further for
proper filesystem functionality. We also gave you kvfs_truncate (which is nonobviously necessary for
file creation).

5 Testing

In order to discourage the bad practice of ADD (autograder driven development). We gave you a simple
testing framework. The framework currently has tests for the provided mount and superblock inflating
code. Hopefully you can model these tests to write tests for other file system functions.

6 Mounting

One final point about mounting, mounting will only work if you mount the filesystem to a non shared
folder. So if you have shared your homework repo to your host operating system, then the mounting
code will not work. Instead mount to a directory in the vm itself (like inside /tmp or /home).

6

CS 162 Spring 2015 Homework 4: kvfs

7 Autograder & Submission

Push your code to the autograder branch ag/hw4 on github to test your code

git add -u .

git commit

git push personal master

git checkout -b ag/hw4

git push personal ag/hw4

Push the final code release to the branch release/hw4 on github to submit

git add -u

git commit

git push personal master

git checkout -b release/hw4

git push personal release/hw4

References

[1] Virtual file system. http://en.wikipedia.org/wiki/Virtual_file_system. Accessed: 2015-04-
08.

[2] Remy Card. Design and implementation of the second extended filesystem.
http://e2fsprogs.sourceforge.net/ext2intro.html. Accessed: 2015-04-08.

[3] Richard Gooch. Overview of the linux virtual file system. https://www.kernel.org/doc/

Documentation/filesystems/vfs.txt, 1999. Accessed: 2015-04-08.

[4] Terje Oseberg. Fuse api documentation. http://fuse.sourceforge.net/doxygen/. Accessed:
2015-04-08.

7

http://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
http://fuse.sourceforge.net/doxygen/

	Overview
	Setup
	FUSE
	VFS
	fuse.ko
	libfuse
	documentation

	kvfs
	struct fnode
	struct kvfs
	.superblock
	tasks

	Testing
	Mounting
	Autograder & Submission

