
CS162
Operating Systems and
Systems Programming

Lecture 11

Deadlock, Address Translation

March 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 12.23/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: SRTF vs RR Example

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 12.33/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 12.43/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• Inspired by Networking “Fair Queueing”

– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N processes

execute simultaneously as if they truly got 1/N of the processor
• Idea: track amount of “virtual time” received by each process

when it is executing
– Take real execution time, scale by factor to reflect time it

would have gotten on ideal multiprocessor
» So, for instance, multiply real time by N

– Keep virtual time for every process advancing at same rate
» Time sliced to achieve multiplexing

– Uses a red-black tree to always find process which has gotten
least amount of virtual time

• Automatically track interactivity:
– Interactive process runs less frequently  lower registered

virtual time  will run immediately when ready to run

Lec 12.53/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– Real-time is about enforcing predictability, and does not
equal to fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),
RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

• Soft Real-Time
– Attempt to meet deadlines with high probability
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

Lec 12.63/4/15 Kubiatowicz CS162 ©UCB Spring 2015

A Final Word On Scheduling
• When do the details of the scheduling policy and

fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time
» Assuming you’re paying for worse

response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response
tim

e 100%

Lec 12.73/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 12.83/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and

there it is, controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

Lec 12.93/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast  no one goes west

Lec 12.103/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Lec 12.113/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

Lec 12.123/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 12.133/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

R1
R2

T1 T2

Lec 12.143/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

Lec 12.153/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– Used by most operating systems, including UNIX

Lec 12.163/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm I coming up in 1.5 weeks!
– March 11th, 7:00-10:00PM
– Rooms: 1 PIMENTEL; 2060 VALLEY LSB
– All topics up to and including next Monday
– Closed book
– 1 page hand-written notes both sides

• HW3 moved 1 week
– Sorry about that, we had a bit of a scheduling snafu

Lec 12.173/4/15 Kubiatowicz CS162 ©UCB Spring 2015

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource  look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources] Add all nodes to UNFINISHED do {

done = trueForeach node in UNFINISHED {if ([Requestnode] <= [Avail]) {remove node from UNFINISHED[Avail] = [Avail] + [Allocnode]done = false}}
} until(done)

– Nodes left in UNFINISHED  deadlocked
Lec 12.183/4/15 Kubiatowicz CS162 ©UCB Spring 2015

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a
mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few
minutes never happened

– For bridge example, make one car roll backwards (may
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

• Many operating systems use other options

Lec 12.193/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam,

suddenly you’re transported back home and told to retry!

Lec 12.203/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at
the beginning.
– Problem: Predicting future is hard, tend to over-
estimate resources

– Example:
» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any

intersection between here and where you want to go; only
one car on the Bay Bridge at a time

• Force all threads to request resources in a particular
order preventing any cyclic use of resources
– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise

Lec 12.213/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Lec 12.223/4/15 Kubiatowicz CS162 ©UCB Spring 2015

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested)  max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Lec 12.233/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab
chopstick either:
» Not last chopstick
» Is last chopstick but someone will have

two afterwards
– What if k-handed lawyers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 12.243/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware
– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

– Consequently, cannot just let different threads of control
use the same memory
» Physics: two different pieces of data cannot occupy the same

locations in memory
– Probably don’t want different threads to even have access
to each other’s memory (protection)

Lec 12.253/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Next Objective

• Dive deeper into the concepts and mechanisms of
memory sharing and address translation

• Enabler of many key aspects of operating systems
– Protection
– Multi-programming
– Isolation
– Memory resource management
– I/O efficiency
– Sharing
– Inter-process communication
– Debugging
– Demand paging

• Today: Linking, Segmentation, Paged Virtual Address

Lec 12.263/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 12.273/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Important Aspects of Memory Multiplexing
• Controlled overlap:

– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

Lec 12.283/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 12.293/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Binding of Instructions and Data to Memory

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…
0x0A00

Physical addresses

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

Lec 12.303/4/15 Kubiatowicz CS162 ©UCB Spring 2015

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…
0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical
Memory

Binding of Instructions and Data to Memory

Lec 12.313/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Second copy of program from previous example

0x300 00000020
… …

0x900 8C2000C0
0x904 0C000280
0x908 2021FFFF
0x90C 14200242
…
0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, r0, loop
…

checkit: …

Process view of memory Physical addresses

0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!
Lec 12.323/4/15 Kubiatowicz CS162 ©UCB Spring 2015

0x1300 00000020
… …

0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
…
0x1A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, r0, loop
…

checkit: …

Process view of memory Processor view of memory

0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example

Lec 12.333/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Multi-step Processing of a Program for Execution

• Preparation of a program for
execution involves components at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final
values anywhere in this path
– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to
locate appropriate memory-resident
library routine

– Stub replaces itself with the address
of the routine, and executes routine

Lec 12.343/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es

Lec 12.353/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprogramming (primitive stage)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Lec 12.363/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprogramming (Version with Protection)

• Can we protect programs from each other without
translation?

– Yes: use two special registers BaseAddr and LimitAddr
to prevent user from straying outside designated area
» If user tries to access an illegal address, cause an error

– During switch, kernel loads new base/limit from PCB
(Process Control Block)
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

Lec 12.373/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Better Solution: Address translation

• Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (MMU) converts between the two views

• Translation essential to implementing protection
– If task A cannot even gain access to task B’s data, no
way for A to adversely affect B

• With translation, every program can be linked/loaded
into same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Lec 12.383/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 12.393/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Base and Bounds (CRAY-1)

• Could use base/limit for dynamic address translation –
translation happens at execution:
– Alter address of every load/store by adding “base”
– Generate error if address bigger than limit

• This gives program the illusion that it is running on its
own dedicated machine, with memory starting at 0
– Program gets continuous region of memory
– Addresses within program do not have to be relocated
when program placed in different region of DRAM

DRAM

<?

+
Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

Lec 12.403/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Issues with Simple B&B Method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Missing support for sparse address space
– Would like to have multiple chunks/program
– E.g.: Code, Data, Stack

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11

Lec 12.413/4/15 Kubiatowicz CS162 ©UCB Spring 2015

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1
4

2

3

physical
memory space

1

2

Lec 12.423/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Error
offset

Check Valid

Access
Error

Lec 12.433/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

Lec 12.443/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

SegID = 0

SegID = 1

Lec 12.453/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Running more programs than fit in memory: Swapping
• Q: What if not all processes fit in memory?
• A: Swapping: Extreme form of Context Switch

– In order to make room for next process, some or all of
the previous process is moved to disk

– This greatly increases the cost of context-switching

• Desirable alternative?
– Some way to keep only active portions of a process in
memory at any one time

– Need finer granularity control over physical memory
Lec 12.463/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Problems with Segmentation

• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

Lec 12.473/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1allocated, 0free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

Lec 12.483/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset  1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

Lec 12.493/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

Lec 12.503/4/15 Kubiatowicz CS162 ©UCB Spring 2015

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #Virtual Address

(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #Virtual Address

(Process B):

Shared
Page

This physical page
appears in address
space of both processes

page #2 V,R,W

Lec 12.513/4/15 Kubiatowicz CS162 ©UCB Spring 2015

E.g., Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Lec 12.523/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary: Paging

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

Lec 12.533/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

1110 0000

What happens if
stack grows to
1110 0000?

Lec 12.543/4/15 Kubiatowicz CS162 ©UCB Spring 2015

stack

Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

11111 11101
11110 11100
11101 10111
11100 10110
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 0000

Allocate new
pages where
room!

1110 0000

Lec 12.553/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Page Table Discussion

• What needs to be switched on a context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (231-1).
» With 1K pages, need 2 million page table entries!

– Con: What if table really big?
» Not all pages used all the time  would be nice to have

working set of page table in memory
• How about combining paging and segmentation?

Lec 12.563/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Next time: Multi-level Page Table

Two-level Page Tables
32-bit address:

P1 index P2 index page offset
10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

• Page: a unit of memory translatable by
memory management unit (MMU)
– Typically 1K – 8K

• Page table structure in memory
– Each user has different page table

• Address Space switch: change pointer
to base of table (hardware register)
– Hardware traverses page table (for
many architectures)

– MIPS uses software to traverse table

Lec 12.573/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never
occur in the system

Lec 12.583/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (2)

• Memory is a resource that must be multiplexed
– Controlled Overlap: only shared when appropriate
– Translation: Change virtual addresses into physical
addresses

– Protection: Prevent unauthorized sharing of resources

• Simple Protection through segmentation
– Base + Limit registers restrict memory accessible to user
– Can be used to translate as well

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Offset of virtual address same as physical address

