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Recall: Multi-Level Feedback Scheduling

7_L‘ Long-Running Compute
. e asks Demoted to

| quantum = 16 /—I/ ow l"lOf‘ITY
|—>’ ) FCFS L

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1lms, next:2ms, next: 4ms, etc)

+ Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level
- If timeout doesn't expire, push up one level (or to top)
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Recall: Linux Completely Fair Scheduler (CFS)

* First appeared in 2.6.23, modified in 2.6.24
- Inspired by Networking “"Fair Queueing”
- Each process given their fair share of resources

- Models an “ideal multitasking processor” in which N processes
execute simultaneously as if they truly got 1/N of the processor

+ Idea: track amount of “virtual time" received by each process
when it is executing

- Take real execution time, scale by factor to reflect time it
would have gotten on ideal multiprocessor

» So, for instance, multiply real time by N
- Keep virtual time for every process advancing at same rate
» Time sliced to achieve multiplexing
- Uses a red-black tree to always find process which has gotten
least amount of virtual time
* Automatically track interactivity:

- Interactive process runs less frequently = lower registered
virtual time = will run immediately when ready to run
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Recall: Real-Time Scheduling (RTS)

- Efficiency is important but predictability is essential:
- Real-time is about enforcing predictability, and does not
equal to fast computing!!!
* Hard Real-Time
- Attempt to meet all deadlines
- EDF (Earliest Deadline First),

+ Soft Real-Time
- Attempt to meet deadlines with high probability

- Important for multimedia applications
- CBS (Constant Bandwidth Server)
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A Final Word On Scheduling

* When do the details of the scheduling policy and

fairness really matter?
- When there aren’t enough resources to go around

* When should you simply buy a faster computer?
- (Or network link, or expanded highway, or ..)
- One approach: Buy it when it will pay

for itself in improved response time o
» Assuming you're paying for worse ]
response time in reduced productivity, [58

customer angst, etc... *3 §
®

2

» Might think that you should bua a
faster X when X is utilized 100%,

but usually, response time goes
to infinity as utilization=100% Utilization

* An interesting implication of this curve:

- Most scheduling algorithms work fine in the “linear”
portion of the Toad curve, fail otherwise

- Argues for buying a faster X when hit "knee” of curve
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Starvation vs Deadlock @

+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources
constantly in use by high-priority threads
- Deadlock: circular waiting for resources
» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention
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Conditions for Deadlock
* Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
X.PO; y-PO;
y-PO; xX.PQ;
y-VO; x.VO;
x.VO; y-VO;

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)
» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

+ Deadlocks occur with multiple resources
- Means you can't decompose the problem
- Can't solve deadlock for each resource independently

+ Example: System with 2 disk drives and two threads
- Each thread needs 2 disk drives to function

- Each thread gets one disk and waits for another one
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Bridge Crossing Example

Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
Starvation is possible
- East-going traffic really fast = no one goes west

Lec 12.9

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)
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Dining Lawyers Problem

+ Five chopsticks/Five Iaw;ers (really cheap restaurant)

- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat

* What if all grab at same time?

- Deadlock!

- How to fix deadlock?

- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat

* How to prevent deadlock?
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- Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards
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Four requirements for Deadlock

Mutual exclusion
- Only one thread at a time can use a resource.
Hold and wait

- Thread holding at least one resource is waiting to
acquire additional resources held by other threads

No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
Circular wait
- There exists a set {T;, .., T} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
»

» T, is waiting for a resource that is held by T;
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Resource-Allocation Graph

- System Model Symbols
- Asetof Threads T7,, T, . . ., T, @ @
- Resource types R, R,, . . ., R,
CPU cycles, memory space, I/O devices ° :
- Each resource type R has W, instances. R, o
- Each thread utilizes a resource as follows: R,

» Request() 7/ Use() 7/ Release()
+ Resource-Allocation Graph:
- V is partitioned into two types:
» T={T;, T,, .., T}, the set threads in the system.
» R={R, R,, .., R}, the set of resource types in system
- request edge - directed edge 7; — R;
- assignment edge - directed edge R, — T;
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Resource Allocation Graph Examples

* Recall:
- request edge - directed edge T; > R;
- assignment edge - directed edge R; > T;

Ry R,

R, R, R
Gl =6
N

Y . VA . ~
° O (g
R; R, R, ':4 »

Simple Resource
Allocation 6raph

Allocation Graph
With Deadlock

Allocation Graph
With Cycle, but
No Deadlock
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Methods for Handling Deadlocks @

+ Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for forcibly preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- Used by most operating systems, including UNIX
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Administrivia

* Midterm I coming up in 1.5 weeks!
- March 11t 7:00-10:00PM
- Rooms: 1 PIMENTEL: 2060 VALLEY LSB
- All topics up to and including next Monday
- Closed book
- 1 page hand-written notes both sides
* HW3 moved 1 week
- Sorry about that, we had a bit of a scheduling snafu
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Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm
- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED Ry @
do { =
%

done = true
Foreach node in UNFINISHED {
if ([Request m@; <= [Avail]) { T T
remove node fTrom UNFINISHED
[Avail] = [Avail] + [Alloc, ] S

done = false o
Q)

} until(done)
- Nodes left in UNFINISHED = deadlocked
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What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other options
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Techniques for Preventing Deadlock

+ Infinite resources

- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, Just Iarge

- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
* No Sharing of resources (totally independent threads)
- Not very realistic
+ Don't allow waiting
- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
- Inefficient, since have to keep retrying

» Consider: driving to San Francisco: when hit traffic jam,
suddenly you're “transported back home and told to retry!
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Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time

» Don't leave home until we know no one is using any
intersection between here and where you want to go: only
one car on the Bay Bridge at a time

* Force all threads to request resources in a particular
order preventing any cyclic use of resources
- Thus, preventing deadlock
- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring
everyone to go clockwise
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Review: Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)
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Banker's Algorithm for Preventing Deadlock

*+ Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if:
(available resources - #requested) > max
remaining that might be needed by any thread
+ Banker's algorithm (less conservative):
- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting

(Max,q.]-[Alloc,.q.] < [Avail]) for ([Request, 4] < [Avail])
Grant request if result is deadlock free (conservativel)

» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T,, T,, .. T,} with T, requesting all remaining
resources, finishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources
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+ Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It's 34 to last, and no one would have k-2

» ..
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Virtualizing Resources

* Physical Reality:
Different Processes/Threads share the same hardware
- Need to multiplex CPU (Just finished: scheduling)
- Need to multiplex use of Memory (Today)
- Need to multiplex disk and devices (later in term)
* Why worry about memory sharing?

- The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

- Consequently, cannot just let different threads of control
use the same memory

» Physics: two different pieces of data cannot occupy the same
locations in memory

- Probably don't want different threads to even have access
to each other's memory (protection)
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Next Objective

+ Dive deeper into the concepts and mechanisms of
memory sharing and address translation

- Enabler of many key aspects of operating systems

- Pr'olf?chon . N <o 8s
- Multi-programming @ %@
- Isolation ”&” 3
g ooNCeog, %
- Memory resource management ¢ o 4 A
- I/0 efficiency 2 -_91 O intro \C gzg
- Sharing % P ‘}9
PP % &
- Inter-process communication 4 o g&a

- Debugging Diqeyed
- Demand paging

* Today: Linking, Segmentation, Paged Virtual Address
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Recall: Single and Multithreaded Processes

| code ” data H files |

registers

| code || data ” files |

[ stack l Iregistersl[registers“regislers]

| stack || stack ” stack |

thread ——= ; § ; ;4—— thread

single-threaded process multithreaded process

* Threads encapsulate concurrency

- "Active” component of a process

* Address spaces encapsulate protection

3/4/15

- Keeps buggy program from trashing the system
- "Passive” component of a process
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Important Aspects of Memory Multiplexing

* Controlled overlap:
- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conversely, would like the ability to overlap when
desired (for communication)
* Translation:
- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
* Protection:
- Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves
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Recall: Loading

Threads
Address Spaces Windows
Processes Files Sockets

Software OS Hardware Virtualization

Hardware 154
Processor Protection
ounda
Networks
€0) Displays
Inputs play
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Binding of Instructions and Data to Memory

Assume 4byte words

0x300 4 * 0x0CO
Physif 0x0CO = 0000 1100 0000

‘\\ 0x300 0011 0000 0000
0x03

W"

Process view of memory
étal: dw 32

start: Iw rl,0(datal)

Binding of Instructions and Data to Memory

jJal checkit
L B

0x0900 8C2000CO
> 0x0904 0CO00

loop: addi ri, ri, 0x0908 2021FFFF
bnz rl, loop 0Xx090C 14200242
checkit: .. / Ox
3/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 12.29

Physical
Memory
0x0000
0x0300| 00000020
Process view of memory Physical addresses
. B i 0C000340
start: Iw rl, O(datal) 0x0900 8C2000CO 2021FFFF
loop:  addi ri, ri, -1 0x0908 2021FFFF
bnz rl, loop 0x090C 14200242
checkit: .. / ox
OxFFFF
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Second copy of program from previous example

Second copy of program from previous example

Physical
Memory
0x0000
0x0300
Process view of memory Physical addresses
. App X
@tal - dw 32 \ 0x300 00000020 OX?OQOO pp
start: Iw rl,0(datal) 0X960 8C2600C0 .
jal  checkit [[T) 0x904 0C000280 |:>
loop:  addi ri, ri, -1 0x908 2021FFFF
bnz rl, r0, loop 0x90C 14200242
checkit: .. / 0;(IOA00
OXFFFF

Need address translation!
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Process view of memory

(atal T dw 32 \

start: Iw r1,0(datal)

jal checkit E
loop: addi r1, r1, -1
bnz rl1, rO, loop

Processor view of memory

0x1300

0x1900
0x1904
0x1908

0x190C

checkit:m... j

« One of many possible translations!
* Where does translation take place?

0x

Physical
Memory

0x0000

0x0300

00000020 | 0x0900

8C2004C0

App X

0C00 0x1300

2021FFFF
14200642
0x1900

00000020

8C2004C0
0C000680
2021FFFF
14200642

OXFFFF

Compile time, Link/Load time, or Execution time?

3/4/15
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Multi-step Processing of a Program for Execution

* Preparation of a program for {soursa)
execution involves components at: gy
- Compile time (i.e., “gcc”) 1 .
- Link/Load time (UNIX "Id” does link) complror | | compie
- Execution time (e.g., dynamic libs) '
+ Addresses can be bound to final /othor\ "-.'_‘_“’5’“'? )
values anywhere in this path \ s T

linkage
aditor

- Depends on hardware support
- Also depends on operating system

{ toad
* Dynamic Libraries (o,
- Linking postponed until execution

% brary .
- Small piece of code, stub, used to | —
locate appropriate memory-resident |5

L load
| time

loadar

library routine N stsm
. . Ilbal In-memory axeculior
- Stub replaces itself with the address dymamic (Eboay S | G
of the routine, and executes routine image tee
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Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

- Application always runs at same place in physical
memory since only one application at a time

- Application can access any physical address _

OxFFFFFFFF
Operating
System

Valid 32-bit
Addresses

Application

0x00000000

- Application given illusion of dedicated machine by giving
it reality of a dedicated machine
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Multiprogramming (primitive stage)

* Multiprogramming without Translation or Protection
- Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating

System Starting M5-DOS...

CiN>_

Application2 0x00020000

Applicationl
0x00000000

- Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (... till Windows 3.x, 95?)
* With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS
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Multiprogramming (Version with Protection)

* Can we protect programs from each other without
translation?

; OXFFFFFFFF
Operating

System
Y +——{LimitAddr=0x10000 |

Application2 | 0x00020000 <«——{BaseAddr=0x20000 |

Applicationl

0x00000000
- Yes: use two special registers BaseAddr and LimitAddr
to prevent user from sfraying outside designated area
» If user tries to access an illegal address, cause an error

- During switch, kernel loads new base/limit from PCB
(Process Control Block)

» User not allowed to change base/limit registers
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Better Solution: Address translation

Virtual Physical
ddressei Addresses

» MMU

Untranslated read or write ——

* Address Space:
- All the addresses and state a process can touch
- Each process and kernel has different address space
+ Consequently, two views of memory:
- View from the CPU (what program sees, virtual memory)
- View from memory (physical memory)
- Translation box (MMU) converts between the two views
* Translation essential to implementing protection

- If task A cannot even gain access to task B's data, no
way for A to adversely affect B

* With translation, every program can be linked/loaded
into same region of user address space
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Recall: General Address Translation

Code Code
Data Stack 1 Data
Heap e S Heap
Stack Code 1 Stack
Prog 1 Data 1 Prog 2
Virtual Virtual
Address Address
Space 1 Space 2
[ OS code \
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks

Physical Address Space
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Simple Base and Bounds (CRAY-1)
Base

Virtual

Address
CPU DRAM

Physical
Limit— Address
No: Error!

* Could use base/limit for dynamic address translation -
translation happens at execution:

- Alter address of every load/store by adding "base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated
when program placed in different region of DRAM
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Issues with Simple B&B Method

process 6 process 6 process 6 process 6

process 5 process 5 process 5 .
process 9 process 9 process 11

process 2 |::> |:> :> process 10

0s os os 0s

* Fragmentation problem
- Not every process is the same size
- Over time, memory space becomes fragmented
* Missing support for sparse address space
- Would like to have multiple chunks/program
- E.g.: Code, Data, Stack
* Hard to do inter-process sharing
- Want to share code segments when possible
- Want to share memory between processes
- Helped by providing multiple segments per process
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More Flexible Segmentation

1
subroutine stack 4
symbaol
table
2
sqrt
main
;
. user view of physical
logical address : memory space memory space :

* Logical View: multiple separate segments
- Typical: Code, Data, Stack
- Others: memory sharing, etc

+ Each segment is given region of contiguous memory
- Has a base and limit

- Can reside anywhere in physical memory
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Implementation of Multi-Segment Model
.

Virtual offset

Address

>Error

Base0| Limit0 [V

Basel

Base3| Limit3 [N Physical
Base4| Limit4 | V Address
Base5b| Limit5| N

Base6| Limit6 | N

Base7| Limit7|V

- Segment map resides in processor
- Segment number mapped into base/limit pair ACCEsS
- Base added to offset to generate physical addféss"
- Error check catches offset out of range

+ As many chunks of physical memory as entries
- Segment addressed by portion of virtual address

- However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

* What is "V/N" (valid / not valid)?

- Can mark segments as invalid; requires check as well
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Intel x86 Special Registers

80386 Special Registers

Seqiment Legistels

15 Cs o] 15 Cs o]

15 58 Q0 15 ES o]

13 E= [s] 15 Gs o]

15

Index '['-" REL

Nl |o|o|L|T|s|Z A e
®|T|PL |F|F|F|F|F|F|XR|F|X|F|*
2

o | mn

RPL = Requestor Puvilege Level 15 1413 12 11 10 ¢ & 7 & 5§ 4 3
TL=Table Indicator

(0= 60T, L) T EEERE] e T
Thdex =Thdex into table

3130 343210 31 Oth
; B Faalt B. Dritectorls Mot
. . 31 0 3 70
Typical Segment Register PG=Paging Ensble e
v . . %E%‘;E'EL?&EA" 1OPL=L/0 Privilege Level
Current Priority is RPL BB Epiocemor OEDunilon Flu
ath coplocessor present TF=Lniettupl E1
Of Code Segmen‘l' (CS) PE=Frotested Made chable TETiap blag
SE=Sigh Elag
ZF=Feio Flag
AF=fAumlialy Flag
PE=Parity Flag
CE=Cauty Flag
3/4/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 12.43

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

[Seg] offset ] |O(code) [0x4000 [0x0800
15 14 13 0 1 (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | 0xFO000 |0x1000
3 (stack) 0x0000 | 0x3000
0x0000 SegiD=0 0x0000
SeglD=1 0x4000 Might
0x4000 —> —
x 0x4800 be shared
0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
) . Other Apps
Virtual Physical

Address Space Address Space
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Running more programs than fit in memory: Swapping

* Q: What if not all processes fit in memory?
+ A: Swapping: Extreme form of Context Switch

- In order to make room for next process, some or all of
the previous process is moved to disk

- This greatly increases the cost of context-switching

oparating =
system

Pt ; process P,
I (2 ) swap out |

— >

process P,

(_5:, swap in l
=

user R ——
space

backing store

Main mamaory

+ Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

- Need finer granularity control over physical memory
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Problems with Segmentation

* Must fit variable-sized chunks into physical memory
* May move processes multiple times to fit everything
* Limited options for swapping to disk

- Fragmentation: wasted space
- External: free gaps between allocated chunks
- Internal: don't need all memory within allocated chunks
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Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
- Allocate physical memory in fixed size chunks ("pages”)
- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

- Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
- Consequently: need multiple pages/segment
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How to Implement Paging?

Virtual Address: Offset

e >
age #1 : .

page #2_|V.R.W \[Physmal Address

| page #3 | V.R,W Check Perm |

PageTablePtr

| PageTableSize

' page #4 |N v
éfri)erss Eage#S V,R,WM Access

Error
. Pa%e Table (One per process)
- Resides in physical memor
- Contains physical page an ger‘mission for each virtual page
. » Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-107= 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address
- Check Page Table bounds and permissions

3/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 12.48




Simple Page Table Example

Example (4 byte pages)

0000 0000

What about Sharing?

Virtual Address

i 0x00 0x00 : (Process A):
— o] 0001 9000——> 0x04 [ [PageTablePtrAl— [page #0 | V.R
i 0x04 00000100 5 0000 1100 J 0x05! :
: fe 1 3 k : #
i 2 0000 0100 | :
i ox06? |9 —> <L | ——— 0x08 E
: b :
: 0x08 | 0000 1000 Page > 0x0C [z :
i 0x09? | Table f
k g OxOE! : -/
: | :
: i —> 0x10 : . .
:  Virtual 0000 0110 ====> 0000 1110 i This physical page
: i appears in address
i Memory 0000 1001 ====> 0000 0101 : PP
: : space of both processes
: Physical
: Memory
........................................................................................................... Virtual Address
(Process B):
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E.g., Linux 32-bit Summary: Paging
Vi | ) Page Table
s xernel spac irtual memory view 7 Physical memory view
| e e e 111 111 —— e it 1100 [ 77,
g gm axcee:eeaa ==km::75125 1111 0000 °L:'“-"\ 11101| null 7
Random stack offset 11100 null
Stack (grows down) J 11011 null 110 0000
= RLIMIT_STACK (e.g., 8MB) 11010| null
11001| null
Random mmap offset 1100 0000 11000 null
: 10111| null
Memory Mapping Segment 10110 null
e 1 10101 nul
| 10100 null
EET \10011 null
1 10010| 10000
368 < :r:gram break 1000 0000 %‘10001 01111 hean
T 3 10000 01110 1 0111 000
Heap start_bri 01111 null
¢ Random brk offset giié(])_ ?]LJI|I| 0101 000
Uninitialized S:aufsvsaféﬁ":, filled with zeros. 01100( null
Example: static char *userName; 0100 0000 01011 01101
Data segment end_data 01010( 01100
Static variables initialized by the programmer. 01001| 01011
Example: static char *gonzo = “God’s own prototype”; |[start_data 01000| 01010
Text segment (ELF) end_code 00111| null code
Stores the binary image of the process (e.g., /bin/gonzo) = 00110| null 0001 0000
0000 0000 00100 null 0000 0000
http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelLayout . pn: 00011| 00101
P 9/1mg/blog P yout.png page # offset 00010| 00100
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Summary: Paging

Summary: Paging

) ) Page Table _ _ ) ) Page Table ' )
an 1\1/]|-r1tual memory Wew?ﬂﬂé ﬁiﬁé Physical memory view 111 ll/Jl_fltUm memory Wew?ﬂﬂé iﬁgé Physical memory view
btabk 11101| null Dtabk 511101 10111
1110 0000 A—§ o)l 110 0000 1110 0000 . 1100|1010 1110 0000
11010| null ¥ 11010| null
11001| null 11001| null
. 1100 0000
What happens if et T To1ma|
stack grows to 10110| null 10110| null
10101 1] E 10101 1l
1110 0000? 10100| nul | so100| nu Allocate new
eap 1 "
1000 0000 ' 10001 01011 1000 0000 ' 10001 01111 pages where
10000( 01110 heap 0111 000 \10000 01110 A room!
01111 null 01111 null
01110( null 01110 null
01101 null 0101 000 01101 null 0101 000
01100( null 01100( null
0100 0000 01011/ 01101 % 0100 0000 01011/ 01101
01010( 01100 01010| 01100
01001| 01011 01001| 01011
01000( 01010 = 01000( 01010 g
00111| null COutc 0001 0000 00111 null COutT 0001 0000
A 00110( null A 00110( null
0000 0000 \33133 i 1 0000 0000 0000 0000 \33183 il e 0000 0000
00011( 00101 00011| 00101
page # offset \ooom 00100 page # offset \00010 00100
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Page Table Discussion Next time: Multi-level Page Table —
1
* What needs to be switched on a context switch? K
- Page table pointer and limit Two-level Page Tables e
32-bit address: |
. Anglysns | 10 | 10 | 12 |
= Fros Plindex | P2index | page offset
» Simple memory allocation / o
» Easy to Share — 4bytes— B
- Con: What if address space is sparse? )
» E.g. on UNIX, code starts at O, stack starts at (23!-1). * Page: a unit of memory.tr'anslafable by
» With 1K pages, need 2 million page table entries! memory management unit (MMU) s
- Con: What if table really big? - Typically 1K - 8K =
» Not all pages used all the time = would be nice to have . ; |
working set of page table in memory PagEe 1: ble St‘ruc;I:lfrfe in memory bl /
- How about combining paging and segmentation? - Each user has different page fable ]
* Address Space switch: change pointer . ;i
to base of table (hardware register) 4
- Hardware traverses page table (for
many architectures)
- MIPS uses software to traverse table
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Summary

+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources
* Four conditions for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait
» 3 set {T;, .., T} of threads with a cyclic waiting pattern
* Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock
- Ignore the problem and pretend that deadlocks never
occur in the system
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Summary (2)

* Memory is a resource that must be multiplexed
- Controlled Overlap: only shared when appropriate

- Translation: Change virtual addresses into physical
addresses

- Protection: Prevent unauthorized sharing of resources

+ Simple Protection through segmentation
- Base + Limit registers restrict memory accessible to user
- Can be used to translate as well

* Page Tables
- Memory divided into fixed-sized chunks of memory
- Offset of virtual address same as physical address
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