CS 162 Project 1: Threads

January 31, 2015

Contents
I—Pintos]

I1.2 Getting Started|
[1.2.1 Installing on own computer| oL

2.4 Alarm Clockl o e e
2.5 Priority Scheduler|
[2.5.1 Priority Donation|

[4__Schedule and Grading|

.1 unning Checkpoint Tests|.

4.2 Checkpoint 1] o v v o e o e
4.3 Checkpoint 2| o

4.4 Final Code Handinl o oo
4.5 Final Report Handin| o

6 _Advicel

|A.2 Calculating Priority]
IA.3 Calculating recent_cpul L L
|IA.4 Calculating load_avgl e

[AS Summary]

10
10
10
10
11

12

CS 162 Spring 2015 Project 1: Threads

In this assignment, we give you a minimally functional thread system. Your job is to extend the
functionality of this system to gain a better understanding of synchronization problems.

1 Pintos

1.1 What is Pintos?

Pintos is a simple operating system framework for the 80x86 architecture. It supports kernel threads,
loading and running user programs, and a file system, but it implements all of these in a very simple
way. In the Pintos projects, you and your project team will strengthen its support in all three of these
areas. You will also add a virtual memory implementation. Pintos could, theoretically, run on a regular
IBM-compatible PC. Unfortunately, it is impractical to supply every CS 162 student a dedicated PC
for use with Pintos. Therefore, we will run Pintos projects in a system simulator, that is, a program
that simulates an 80x86 CPU and its peripheral devices accurately enough that unmodified operating
systems and software can run under it. In class we will use the Bochs and QEMU simulators. Pintos
has also been tested with VMware Player.

1.2 Getting Started

To get started you will have to log in to the vagrant box you set up in HWO0, after you clone and build
the project, Pintos should just work. All necessary scripts & dependencies to run Pintos have already
been installed in the virtual machine.

As this is your first group project, you will need to link your virtual machine to your group’s reposi-
tory. You will need to go into the group directory located in the home directory. You will then need to
build Pintos in order to use it.

Replace groupX with the group repo you were assigned to, and j; with the checkpoint
number!

cd ~/group

git remote rm staff

git remote rm group

git remote add staff git@github.com:Berkeley-CS162/group0.git
git pull staff master

git remote add group git@github.com:Berkeley-CS162/groupX.git
git push group master

git checkout -b ag/projl/checkpoint<#>

git checkout -b release/projl/checkpoint<#>

git checkout master

cd src/utils/

make

cd ../threads

make check

The last command should run our comprehensive test suite and should say you've failed all the tests.
Your job is to fix that.

At this point you should have a nice, clean, populated git repo that contains the sources for your
group to work on. You may want to tell git to push and pull from your group repository by default (as
opposed to origin, which doesn’t exist). You can do this by running the following commands:

$ git branch --set-upstream master group/master

CS 162 Spring 2015 Project 1: Threads

1.2.1 Imnstalling on own computer

Some of you Linux users may want to forgo the entire virtual machine altogether and want to work
natively on your machine. Though the course doesn’t “officially” support this you can find instructions
for doing so here: pintos linux installation

http://cs162.eecs.berkeley.edu/pintos_12.html

CS 162 Spring 2015 Project 1: Threads

1.3 Source Tree

threads/
Source code for the base Pintos kernel, most of your Project 1 work will reside here

userprog/
Source code for the user program loader, you will modify this for Project 2

vm/
An almost empty directory. You will implement virtual memory here in Project 2.

filesys/
Source code for a basic file system. You will use this file system in project 2.

devices/
Source code for I/O device interfacing: keyboard, timer, disk, etc. You will modify the timer implemen-
tation in project 1. Otherwise you should have no need to change this code.

lib/

An implementation of a subset of the standard C library. The code in this directory is compiled into
both the Pintos kernel and, starting from project 2, user programs that run under it. In both kernel
code and user programs, headers in this directory can be included using the #include <...> notation.
You should have little need to modify this code.

lib/kernel/

Parts of the C library that are included only in the Pintos kernel. This also includes implementations
of some data types that you are free to use in your kernel code: bitmaps, doubly linked lists, and hash
tables. In the kernel, headers in this directory can be included using the #include <...> notation.

lib/user/
Parts of the C library that are included only in Pintos user programs. In user programs, headers in this
directory can be included using the #include <...> notation.

tests/
Tests for each project. You can modify this code if it helps you test your submission, but we will replace
it with the originals before we run the tests.

examples/
Example user programs for use starting with project 2.

misc/

utils/

These files may come in handy if you decide to try working with Pintos on your own machine. Otherwise,
you can ignore them.

CS 162 Spring 2015 Project 1: Threads

1.4 Building Pintos

This section describes the interesting files inside the \src\threads\build directory.

threads/build/Makefile
A copy of pintosMakefile.build. It describes how to build the kernel. See Adding Source Files, for more
information.

threads/build/kernel.o

Object file for the entire kernel. This is the result of linking object files compiled from each individual
kernel source file into a single object file. It contains debug information, so you can run GDB or back-
trace on it.

threads/build/kernel.bin

Memory image of the kernel, that is, the exact bytes loaded into memory to run the Pintos kernel. This
is just kernel.o with debug information stripped out, which saves a lot of space, which in turn keeps the
kernel from bumping up against a 512 kB size limit imposed by the kernel loader’s design.

threads/build/loader.bin
Memory image for the kernel loader, a small chunk of code written in assembly language that reads the
kernel from disk into memory and starts it up. It is exactly 512 bytes long, a size fixed by the PC BIOS.

Subdirectories of build contain object files (.0) and dependency files (.d), both produced by the compiler.
The dependency files tell make which source files need to be recompiled when other source or header
files are changed.

1.5 Running Pintos

Note: If you are not using the cs162 Vagrant box, you can run pintos by logging into iclus-
ter22.eecs.berkeley.edu, icluster23, or icluster24. Pintos will only work on these machines.
Please let a TA know via Piazza if Pintos is not working on these machines.

We’ve supplied a program for conveniently running Pintos in a simulator, called pintos. In the simplest
case, you can invoke pintos as pintos argument.... Each argument is passed to the Pintos kernel for
it to act on.

Try it out. First cd into the newly created build directory. Then issue the command pintos run alarm-multiple,
which passes the arguments run alarm-multiple to the Pintos kernel. In these arguments, run instructs
the kernel to run a test and alarm-multiple is the test to run.

This command creates a bochsrc.txt file, which is needed for running Bochs, and then invoke Bochs.
The text printed by Pintos inside Bochs probably went by too quickly to read. However, you’ve probably
noticed by now that the same text was displayed in the terminal you used to run pintos. This is because
Pintos sends all output both to the VGA display and to the first serial port, and by default the serial
port is connected to Bochs’s stdin and stdout. You can log serial output to a file by redirecting at the
command line, e.g. pintos run alarm-multiple > logfile.

The pintos program offers several options for configuring the simulator or the virtual hardware. If
you specify any options, they must precede the commands passed to the Pintos kernel and be separated
from them by — so that the whole command looks like pintos option... -- argument... Invoke
pintos without any arguments to see a list of available options. Options can select a simulator to use:
the default is Bochs, but --gemu selects QEMU. You can set the amount of memory to give the VM. You
can run the simulator with a debugger. GDB must be attached to pintos via the following command:

(gdb) target remote localhost:1234

CS 162 Spring 2015 Project 1: Threads

Finally, you can select how you want VM output to be displayed: use -v to turn off the VGA display,
-t to use your terminal window as the VGA display instead of opening a new window (Bochs only), or
-s to suppress serial input from stdin and output to stdout.

The Pintos kernel has commands and options other than run. These are not very interesting for now,
but you can see a list of them using -h, e.g. pintos -h.

1.6 More

Pintos is a small operating system, but it is still a valid operating system, so there is a lot of complexity,
lot more than I can fit in one section of a Project spec, fortunately we had a detailed reference guide
availble on the course website here

1.7 Why Pintos?

Why the name “Pintos”? First, like nachos (the operating system previously used in CS162), pinto
beans are a common Mexican food. Second, Pintos is small and a “pint” is a small amount. Third, like
drivers of the eponymous car, students are likely to have trouble with blow-ups.

2 Threads

Alright enough background information, lets get started with our project!

2.1 Understanding Threads

The first step is to read and understand the code for the initial thread system. Pintos already
implements thread creation and thread completion, a simple scheduler to switch between threads, and
synchronization primitives (semaphores, locks, condition variables, and optimization barriers). Some of
this code might seem slightly mysterious. You can read through parts of the source code to see what’s
going on. If you like, you can add calls to printf () almost anywhere, then recompile and run to see
what happens and in what order. You can also run the kernel in a debugger and set breakpoints at
interesting spots, single-step through code and examine data, and so on.

When a thread is created, you are creating a new context to be scheduled. You provide a function
to be run in this context as an argument to thread_create(). The first time the thread is scheduled
and runs, it starts from the beginning of that function and executes in that context. When the function
returns, the thread terminates. Each thread, therefore, acts like a mini-program running inside Pintos,
with the function passed to thread_create () acting like main(). At any given time, exactly one thread
runs and the rest, if any, become inactive. The scheduler decides which thread to run next. (If no
thread is ready to run at any given time, then the special “idle” thread, implemented in idle(), runs.)
Synchronization primitives can force context switches when one thread needs to wait for another thread
to do something.

The mechanics of a context switch are in threads/switch.S, which is 80x86 assembly code. (You don’t
have to understand it.) It saves the state of the currently running thread and restores the state of the
thread we're switching to.

Using the GDB debugger, slowly trace through a context switch to see what happens. You can set a
breakpoint on schedule() to start out, and then single-step from there.(2) Be sure to keep track of each
thread’s address and state, and what procedures are on the call stack for each thread. You will notice
that when one thread calls switch_threads(), another thread starts running, and the first thing the
new thread does is to return from switch_threads (). You will understand the thread system once you
understand why and how the switch_threads() that gets called is different from the switch_threads()
that returns.

http://cs162.eecs.berkeley.edu/pintos_6.html

CS 162 Spring 2015 Project 1: Threads

Warning: In Pintos, each thread is assigned a small, fixed-size execution stack just under 4 kB in size.
The kernel tries to detect stack overflow, but it cannot do so perfectly. You may cause bizarre problems,
such as mysterious kernel panics, if you declare large data structures as non-static local variables, e.g.
int buf[1000];. Alternatives to stack allocation include the page allocator and the block allocator.
(see section A.5 Memory Allocation).

2.2 Source Files

You will want to look at all the files inside threads/ and devices/ you will most certainly not change
all the files in here but its good practice to look through all the code to see what kind of beast you are
working with. It may also help to look through code in the 1ib/ directory to understand the useful
library routines Pintos uses.

2.3 Synchronization

Proper synchronization is an important part of the solutions to these problems. Any synchronization
problem can be crudely solved by turning interrupts off: while interrupts are off, there is no concurrency,
so there’s no possibility for race conditions. Therefore, it’s tempting to solve all synchronization problems
this way, but don’t. Instead, use semaphores, locks, and condition variables to solve the bulk of your
synchronization problems. Read the tour section on synchronization (see section A.3 Synchronization)
or the comments in threads/synch.c if you're unsure what synchronization primitives may be used in
what situations.

In the Pintos projects, the only class of problem best solved by disabling interrupts is coordinating
data shared between a kernel thread and an interrupt handler. Because interrupt handlers can’t sleep,
they can’t acquire locks. This means that data shared between kernel threads and an interrupt handler
must be protected within a kernel thread by turning off interrupts.

This project only requires accessing a little bit of thread state from interrupt handlers. For the
alarm clock, the timer interrupt needs to wake up sleeping threads. In the advanced scheduler, the timer
interrupt needs to access a few global and per-thread variables. When you access these variables from
kernel threads, you will need to disable interrupts to prevent the timer interrupt from interfering.

When you do turn off interrupts, take care to do so for the least amount of code possible, or you can
end up losing important things such as timer ticks or input events. Turning off interrupts also increases
the interrupt handling latency, which can make a machine feel sluggish if taken too far.

The synchronization primitives themselves in synch.c are implemented by disabling interrupts. You
may need to increase the amount of code that runs with interrupts disabled here, but you should still
try to keep it to a minimum. Disabling interrupts can be useful for debugging, if you want to make
sure that a section of code is not interrupted. You should remove debugging code before turning in your
project. (Don’t just comment it out, because that can make the code difficult to read.)

There should be no busy waiting in your submission. A tight loop that calls thread_yield() is one
form of busy waiting.

2.4 Alarm Clock

Reimplement timer_sleep(), defined in devices/timer.c Although a working implementation is
provided, it “busy waits,” that is, it spins in a loop checking the current time and calling thread_yield ()
until enough time has gone by. Reimplement it to avoid busy waiting.

e void timer_sleep (int64_t ticks)

Suspends execution of the calling thread until time has advanced by at least x timer ticks. Unless
the system is otherwise idle, the thread need not wake up after exactly x ticks. Just put it on
the ready queue after they have waited for the right amount of time. timer_sleep() is useful for
threads that operate in real-time, e.g. for blinking the cursor once per second.

CS 162 Spring 2015 Project 1: Threads

The argument to timer_sleep() is expressed in timer ticks, not in milliseconds or any another
unit. There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is a macro defined in
devices/timer.h. The default value is 100. We don’t recommend changing this value, because any
change is likely to cause many of the tests to fail.

Separate functions timer_msleep(), timer_usleep(), and timer_nsleep() do exist for sleep-
ing a specific number of milliseconds, microseconds, or nanoseconds, respectively, but these will call
timer_sleep() automatically when necessary. You do not need to modify them. If your delays seem
too short or too long, reread the explanation of the -r option to pintos. The alarm clock implementation
is not needed for later projects.

2.5 Priority Scheduler

Implement priority scheduling in Pintos. When a thread is added to the ready list that has a higher
priority than the currently running thread, the current thread should immediately yield the processor
to the new thread. Similarly, when threads are waiting for a lock, semaphore, or condition variable, the
highest priority waiting thread should be awakened first. A thread may raise or lower its own priority
at any time, but lowering its priority such that it no longer has the highest priority must cause it to
immediately yield the CPU.

Thread priorities range from PRI_MIN (0) to PRI_MAX (63). Lower numbers correspond to lower
priorities, so that priority 0 is the lowest priority and priority 63 is the highest. The initial thread
priority is passed as an argument to thread_create(). If there’s no reason to choose another priority,
use PRI_DEFAULT (31). The PRI_ macros are defined in threads/thread.h, and you should not change
their values.

2.5.1 Priority Donation

One issue with priority scheduling is “priority inversion”. Consider high, medium, and low priority
threads H, M, and L, respectively. If H needs to wait for L (for instance, for a lock held by L), and M is
on the ready list, then H will never get the CPU because the low priority thread will not get any CPU
time. A partial fix for this problem is for H to “donate” its priority to L while L is holding the lock,
then recall the donation once L releases (and thus H acquires) the lock.

Implement priority donation. You will need to account for all different situations in which
priority donation is required. Be sure to handle multiple donations, in which multiple priorities are
donated to a single thread. You must also handle nested donation: if H is waiting on a lock that M
holds and M is waiting on a lock that L holds, then both M and L should be boosted to H’s priority. If
necessary, you may impose a reasonable limit on depth of nested priority donation, such as 8 levels.

You must implement priority donation for locks. You need not implement priority donation for the
other Pintos synchronization constructs. You do need to implement priority scheduling in all cases.

Finally, fix the following functions that allow a thread to examine and modify its own priority.
Skeletons for these functions are provided in threads/thread.c.

e void thread_set_priority (int new_priority)
Sets the current thread’s priority to new_priority. If the current thread no longer has the highest
priority, yields.

e int thread_get_priority (void)
Returns the current thread’s priority. In the presence of priority donation, returns the higher

(donated) priority.

You need not provide any interface to allow a thread to directly modify other threads’ priorities. The
priority scheduler is not used in any later project.

CS 162 Spring 2015 Project 1: Threads

2.6 Advanced Scheduler

Implement a multilevel feedback queue scheduler similar to the 4.4BSD scheduler to reduce the average
response time for running jobs on your system. See for detailed requirements. Like the priority
scheduler, the advanced scheduler chooses the thread to run based on priorities. However, the advanced
scheduler does not do priority donation. Thus, we recommend that you have the priority scheduler
working, except possibly for priority donation, before you start work on the advanced scheduler. You
must write your code to allow us to choose a scheduling algorithm policy at Pintos startup time. By
default, the priority scheduler must be active, but we must be able to choose the 4.4BSD scheduler
with the -m1fqs kernel option. Passing this option sets thread_mlfqgs, declared in threads/thread.h,
to true when the options are parsed by parse_options(), which happens early in main(). When
the 4.4BSD scheduler is enabled, threads no longer directly control their own priorities. The priority
argument to thread_create() should be ignored, as well as any calls to thread_set_priority(),
and thread_get_priority() should return the thread’s current priority as set by the scheduler. The
advanced scheduler is not used in any later project

3 Testing

Your test result grade will be based on our tests. FEach project has several tests, each of which has a
name beginning with tests. To completely test your submission, invoke make check from the project
build directory. This will build and run each test and print a “pass” or “fail” message for each one.
When a test fails, make check also prints some details of the reason for failure. After running all the
tests, make check also prints a summary of the test results. For project 1, the tests will probably run
faster in Bochs. For the rest of the projects, they will run much faster in QEMU. make check will select
the faster simulator by default, but you can override its choice by specifying SIMULATOR=--bochs or
SIMULATOR=--gemu on the make command line.

You can also run individual tests one at a time. A given test t writes its output to t.output, then a
script scores the output as “pass” or “fail” and writes the verdict to t.result. To run and grade a single
test, make the .result file explicitly from the build directory, e.g. make tests/threads/alarm-multiple.result.
If make says that the test result is up-to-date, but you want to re-run it anyway, either run make clean
or delete the .output file by hand.

By default, each test provides feedback only at completion, not during its run. If you prefer, you
can observe the progress of each test by specifying VERBOSE=1 on the make command line, as in
make check VERBOSE=1. You can also provide arbitrary options to the pintos run by the tests with
PINTOSOPTS="...’, e.g. make check PINTOSOPTS=’-j 1’ to select a jitter value of 1/

All of the tests and related files are in pintos/src/tests. Before we test your submission, we will
replace the contents of that directory by a pristine, unmodified copy, to ensure that the correct tests are
used. Thus, you can modify some of the tests if that helps in debugging, but we will run the originals.

All software has bugs, so some of our tests may be flawed. If you think a test failure is a bug in the
test, not a bug in your code, please point it out. We will look at it and fix it if necessary.

Please don’t try to take advantage of our generosity in giving out our test suite. Your code has
to work properly in the general case, not just for the test cases we supply. For example, it would be
unacceptable to explicitly base the kernel’s behavior on the name of the running test case. Such attempts
to side-step the test cases will receive no credit. If you think your solution may be in a gray area here,
please ask us about it.

4 Schedule and Grading

As this assignment is fairly open-ended, we’ll have weekly check points to ensure that you’re on the right
track. The assignment lasts for three weeks. The first two deadlines are small bite sized portions of your

CS 162 Spring 2015 Project 1: Threads

project for your benefit: feel free to submit early if you're looking for feedback. Missing these deadlines
causes you to lose 5 points (each) on your code portion. You may not use slip days for checkpoints 1
or 2. Whereas the final deadline is worth 50 points and you may use slip days. All checkpoints are due
on Wednesday nights.

Additionally, the design you provide during your first two weeks is considered to be a work-in-progress.
I’'m expecting that you’ll make some changes to your design during implementation and that you’ll need
to change your tests to accommodate interesting cases you discover while trying to make things work.
That said, you’ll be penalized for any major design changes. In other words: your design document needs
to be a good-faith effort and reasonably resemble what you build, otherwise you haven’t really done a
design document. We're trying to get you into the habit of test-driven development, which means your
tests should be good enough to describe how your system should work before you start implementation.
To enforce this, a similar penalty policy exists for your tests: if your final set of tests don’t look anything
like your earlier tests, then we’ll take off points as you haven’t really built proper tests the first time.
That said, I wouldn’t worry about it — nobody lost points for this last semester.

If you miss a checkpoint deadline then you can submit working code up until the final deadline for
credit (you just lose the points associated with that checkpoint). Note that all the checkpoints require
you to submit partial functionality so you'll probably have to end up doing the work anyway in order
to do the next checkpoint.

4.1 Running Checkpoint Tests
To run the tests associated with each checkpoint [chl, ch2, ch3], do the following:

cd src/threads

make clean

./prepare [chl, ch2, ch3]
make check

4.2 Checkpoint 1

Due: 2/18
For the first checkpoint, the following code features will be due

e (5 points) A completely working Alarm Clock implementation that passes all our given tests, and
a priority scheduler that passes all non-donation tests.

e (10 points) An initial design document that details how you will implement the alarm clock, priority
scheduler with priority donation, and the advanced scheduler.

e (10 points) Your design review with your TA (being able to answer questions about the project)

4.3 Checkpoint 2
Due: 2/25

e (5 points) A fully functional priority scheduler and alarm.

4.4 Final Code Handin
Due: 3/04
e (50 points) A fully functional alarm, priority scheduler, and advanced scheduler.

e (10 points) Good design and clean code through out your entire project

10

CS 162 Spring 2015 Project 1: Threads

4.5 Final Report Handin
Due: 3/06

e (10 points) Final Report (A cleaned up version of your initial design document)

11

CS 162 Spring 2015 Project 1: Threads

5 Advice

In the past, many groups divided the assignment into pieces, then each group member worked on his or
her piece until just before the deadline, at which time the group reconvened to combine their code and
submit. This is a bad idea. We do not recommend this approach. Groups that do this often find that
two changes conflict with each other, requiring lots of last-minute debugging. Some groups who have
done this have turned in code that did not even compile or boot, much less pass any tests.

Instead, we recommend integrating your team’s changes early and often, using git. This is less likely
to produce surprises, because everyone can see everyone else’s code as it is written, instead of just when
it is finished. These systems also make it possible to review changes and, when a change introduces a
bug, drop back to working versions of code.

You should expect to run into bugs that you simply don’t understand while working on this and
subsequent projects. When you do, reread the appendix on debugging tools, which is filled with useful
debugging tips that should help you to get back up to speed. Be sure to read the section on backtraces
in the appendix, which will help you to get the most out of every kernel panic or assertion failure.

We also encourage you guys to pair or even group program. Having multiple sets of eyes looking at
the same code can help avoid/spot subtle bugs that can drive people insane.

Also use gdb.

Do not commit/push binary files.

These projects are designed to be difficult and even push you to your limits as a developer, so plan
to be busy the next three weeks, and have fun!

12

CS 162 Spring 2015 Project 1: Threads

A 4.4BSD Scheduler

The goal of a general-purpose scheduler is to balance threads’ different scheduling needs. Threads that
perform a lot of I/O require a fast response time to keep input and output devices busy, but need little
CPU time. On the other hand, compute-bound threads need to receive a lot of CPU time to finish their
work, but have no requirement for fast response time. Other threads lie somewhere in between, with
periods of I/O punctuated by periods of computation, and thus have requirements that vary over time.
A well-designed scheduler can often accommodate threads with all these requirements simultaneously.

For project 1, you must implement the scheduler described in this appendix. Our scheduler resembles
the one described in [McKusick|, which is one example of a multilevel feedback queue scheduler. This type
of scheduler maintains several queues of ready-to-run threads, where each queue holds threads with a
different priority. At any given time, the scheduler chooses a thread from the highest-priority non-empty
queue. If the highest-priority queue contains multiple threads, then they run in “round robin” order.

Multiple facets of the scheduler require data to be updated after a certain number of timer ticks.
In every case, these updates should occur before any ordinary kernel thread has a chance to run, so
that there is no chance that a kernel thread could see a newly increased timer_ticks() value but old
scheduler data values.

The 4.4BSD scheduler does not include priority donation.

A.1 Niceness

Thread priority is dynamically determined by the scheduler using a formula given below. However, each
thread also has an integer nice value that determines how “nice” the thread should be to other threads.
A nice of zero does not affect thread priority. A positive nice, to the maximum of 20, decreases the
priority of a thread and causes it to give up some CPU time it would otherwise receive. On the other
hand, a negative nice, to the minimum of -20, tends to take away CPU time from other threads. The
initial thread starts with a nice value of zero. Other threads start with a nice value inherited from their
parent thread. You must implement the functions described below, which are for use by test programs.
We have provided skeleton definitions for them in “threads/thread.c”.

e int thread_get_nice (void)

Returns the current thread’s nice value.

e void thread_set_nice (int new_nice)

Sets the current thread’s nice value to new_nice and recalculates the thread’s priority based on the
new value (see section [A.2 Calculating Priority]). If the running thread no longer has the highest
priority, yields.

A.2 Calculating Priority

Our scheduler has 64 priorities and thus 64 ready queues, numbered 0 (PRI_MIN) through 63 (PRI_MAX).
Lower numbers correspond to lower priorities, so that priority 0 is the lowest priority and priority 63 is
the highest. Thread priority is calculated initially at thread initialization. It is also recalculated once
every fourth clock tick, for every thread. In either case, it is determined by the formula

priority = PRI_MAX — (recent_cpu/4) — (nice x 2)

, where recent_cpu is an estimate of the CPU time the thread has used recently (see below) and nice
is the thread’s nice value. The result should be rounded down to the nearest integer (truncated). The
coefficients 1/4 and 2 on recent_cpu and nice, respectively, have been found to work well in practice
but lack deeper meaning. The calculated priority is always adjusted to lie in the valid range PRI_MIN
to PRI_MAX.

13

http://cs162.eecs.berkeley.edu/pintos_13.html#McKusick

CS 162 Spring 2015 Project 1: Threads

This formula gives a thread that has received CPU time recently lower priority for being reassigned
the CPU the next time the scheduler runs. This is key to preventing starvation: a thread that has not
received any CPU time recently will have a recent_cpu of 0, which barring a high nice value should
ensure that it receives CPU time soon.

A.3 Calculating recent_cpu

We wish recent_cpu to measure how much CPU time each process has received “recently.” Furthermore,
as a refinement, more recent CPU time should be weighted more heavily than less recent CPU time.
One approach would use an array of n elements to track the CPU time received in each of the last n
seconds. However, this approach requires O(n) space per thread and O(n) time per calculation of a new
weighted average.

Instead, we use a exponentially weighted moving average, which takes this general form:

z(0) = £(0)
x(t)=axx(t—1)+ f(t)
a=k/(k+1)

where x(t) is the moving average at integer time t >= 0, f(t) is the function being averaged, and k >0
controls the rate of decay. We can iterate the formula over a few steps as follows:

z(5) = at* f(1) +a® « f(2) + a® * f(3) +ax f(4) + f(5)

The value of f(t) has a weight of 1 at time t, a weight of a at time t+1, a? at time t+2, and so on. We
can also relate x(t) to k: f(t) has a weight of approximately 1/e at time t+k, approximately 1/e? at time
t+2*k, and so on. From the opposite direction, f(t) decays to weight w at time ¢t + In(w)/In(a).

The initial value of recent_cpu is 0 in the first thread created, or the parent’s value in other new
threads. Each time a timer interrupt occurs, recent_cpu is incremented by 1 for the running thread only,
unless the idle thread is running. In addition, once per second the value of recent_cpu is recalculated
for every thread (whether running, ready, or blocked), using this formula:

recent_cpu = (2 * load_avg)/(2 x Lload_avg + 1) * recent_cpu + nice

, where load_avg is a moving average of the number of threads ready to run (see below). If load_avg
is 1, indicating that a single thread, on average, is competing for the CPU, then the current value of
recent_cpu decays to a weight of 0.1 in In(0.1)/In(2) = approx. 6 seconds; if load_avg is 2, then decay
to a weight of 0.1 takes (n(0.1)/In(3) = approx. 8 seconds. The effect is that recent_cpu estimates the
amount of CPU time the thread has received “recently,” with the rate of decay inversely proportional
to the number of threads competing for the CPU.

Assumptions made by some of the tests require that these recalculations of recent_cpu be made ex-
actly when the system tick counter reaches a multiple of a second, that is, when timer_ticks() % TIMER_FREQ == O,
and not at any other time.

The value of recent_cpu can be negative for a thread with a negative nice value. Do not clamp
negative recent_cpu to 0.

You may need to think about the order of calculations in this formula. We recommend computing
the coefficient of recent_cpu first, then multiplying. Some students have reported that multiplying
load_avg by recent_cpu directly can cause overflow.

You must implement thread_get_recent_cpu(), for which there is a skeleton in “threads/thread.c”.

14

CS 162 Spring 2015 Project 1: Threads

e int thread_get_recent_cpu(void)

Returns 100 times the current thread’s recent_cpu value, rounded to the nearest integer.

A.4 Calculating load _avg

Finally, load_avg, often known as the system load average, estimates the average number of threads
ready to run over the past minute. Like recent_cpu, it is an exponentially weighted moving average.
Unlike priority and recent_cpu, load_avg is system-wide, not thread-specific. At system boot, it is
initialized to 0. Once per second thereafter, it is updated according to the following formula:

load_avg = (59/60) x Load_avg + (1/60) x ready_threads

, where ready_threads is the number of threads that are either running or ready to run at time of
update (not including the idle thread).

Because of assumptions made by some of the tests, load_avg must be updated exactly when the
system tick counter reaches a multiple of a second, that is, when timer_ticks() % TIMER_FREQ == O,
and not at any other time.

You must implement thread_get_load_avg(), for which there is a skeleton in “threads/thread.c”.

e int thread_get_load_avg(void)

Returns 100 times the current system load average, rounded to the nearest integer.

A.5 Summary

The following formulas summarize the calculations required to implement the scheduler. They are not
a complete description of scheduler requirements.

Every thread has a nice value between -20 and 20 directly under its control. Each thread also has a
priority, between 0 (PRI_MIN) through 63 (PRI_MAX), which is recalculated using the following formula
every fourth tick:

priority = PRI_MAX — (recent_cpu/4) — (nice % 2)

. recent_cpu measures the amount of CPU time a thread has received "recently.” On each timer tick,
the running thread’s recent_cpu is incremented by 1. Once per second, every thread’s recent_cpu is
updated this way:

recent_cpu = (2 x load_avg)/(2 x load_avg + 1) * recent_cpu + nice

. load_avg estimates the average number of threads ready to run over the past minute. It is initialized
to 0 at boot and recalculated once per second as follows:

load_avg = (59/60) x Load_avg + (1/60) x ready_threads

. where ready_threads is the number of threads that are either running or ready to run at time of
update (not including the idle thread).

A.6 Fixed-Point Real Arithmetic

In the formulas above, priority, nice, and ready_threads are integers, but recent_cpu and load_avg
are real numbers. Unfortunately, Pintos does not support floating-point arithmetic in the kernel, because
it would complicate and slow the kernel. Real kernels often have the same limitation, for the same reason.
This means that calculations on real quantities must be simulated using integers. This is not difficult,
but many students do not know how to do it. This section explains the basics.

15

CS 162 Spring 2015 Project 1: Threads

The fundamental idea is to treat the rightmost bits of an integer as representing a fraction. For
example, we can designate the lowest 14 bits of a signed 32-bit integer as fractional bits, so that an
integer x represents the real number z/(2'*).This is called a 17.14 fixed-point number representation,
because there are 17 bits before the decimal point, 14 bits after it, and one sign bit. E| A number in
17.14 format represents, at maximum, a value of (23! —1)/(2'%) = approx. 131,071.999.

Suppose that we are using a p.q fixed-point format, and let f = 2**q. By the definition above, we can
convert an integer or real number into p.q format by multiplying with f. For example, in 17.14 format
the fraction 59/60 used in the calculation of load_avg, above, is 59/60 * (2 * x14) = 16,110. To convert
a fixed-point value back to an integer, divide by f. (The normal “/” operator in C rounds toward zero,
that is, it rounds positive numbers down and negative numbers up. To round to nearest, add f / 2 to a
positive number, or subtract it from a negative number, before dividing.)

Many operations on fixed-point numbers are straightforward. Let z and y be fixed-point numbers,
and let n be an integer. Then the sum of x and y is x + y and their difference is £ — y. The sum of x
and n is + n x f; difference, x — n * f; product, x * n; quotient, x/n.

Multiplying two fixed-point values has two complications. First, the decimal point of the result is
q bits too far to the left. Consider that % * % should be slightly less than 1, but 16,111 % 16,111 =
259,564,321 is much greater than 2'* = 16,384. Shifting q bits right, we get 259, 564,321/(2!*) =
15,842, or about 0.97, the correct answer. Second, the multiplication can overflow even though the
answer is representable. For example, 64 in 17.14 format is 64 * (2 % *x14) = 1,048,576 and its square
642 = 4,096 is well within the 17.14 range, but 1,048,576% = 240, greater than the maximum signed
32-bit integer value 2**31 - 1. An easy solution is to do the multiplication as a 64-bit operation. The
product of z and y is then ((int64:)x) *y/f.

Dividing two fixed-point values has opposite issues. The decimal point will be too far to the right,
which we fix by shifting the dividend q bits to the left before the division. The left shift discards the
top q bits of the dividend, which we can again fix by doing the division in 64 bits. Thus, the quotient
when z is divided by y is ((int64;)x) = f/y.

This section has consistently used multiplication or division by f, instead of g-bit shifts, for two
reasons. First, multiplication and division do not have the surprising operator precedence of the C shift
operators. Second, multiplication and division are well-defined on negative operands, but the C shift
operators are not. Take care with these issues in your implementation.

The following table summarizes how fixed-point arithmetic operations can be implemented in C. In
the table, z and y are fixed-point numbers, n is an integer, fixed-point numbers are in signed p.q format
where p + q = 31, and fis 1 << ¢:

1Because we are working in binary, the “decimal” point might more correctly be called the “binary” point, but the
meaning should be clear.

16

CS 162 Spring 2015 Project 1: Threads

Convert n to fixed point: nx f

Convert z to integer (rounding toward zero): x/f

(x+ f/2)/f if x >=0,
(x—f/2)/f ifx <=0.

Convert z to integer (rounding to nearest):

Add z and y: x+y

Subtract y from z: T—y

Add z and n: T+nx*f
Subtract n from z: x—nx*f
Multiply z by ¥: ((int6dy)xz) * y/ f
Multiply = by n: T*n

Divide z by y: ((int64)x) * f/y
Divide z by n: x/n

17

	Pintos
	What is Pintos?
	Getting Started
	Installing on own computer

	Source Tree
	Building Pintos
	Running Pintos
	More
	Why Pintos?

	Threads
	Understanding Threads
	Source Files
	Synchronization
	Alarm Clock
	Priority Scheduler
	Priority Donation

	Advanced Scheduler

	Testing
	Schedule and Grading
	Running Checkpoint Tests
	Checkpoint 1
	Checkpoint 2
	Final Code Handin
	Final Report Handin

	Advice
	4.4BSD Scheduler
	Niceness
	Calculating Priority
	Calculating recent_cpu
	Calculating load_avg
	Summary
	Fixed-Point Real Arithmetic

