
CS 162 Project 2: User Programs

March 27, 2015

Contents

1 Overview 3

2 Code style and commit messages 3

3 User Programs 3

4 Getting Started 4

5 Checkpoint 1 5
5.1 Background . 5

5.1.1 Source Files . 5
5.1.2 Using the File System . 6
5.1.3 How User Programs Work . 7

5.2 Requirements . 7
5.2.1 Design Document . 7
5.2.2 Design Review . 7
5.2.3 Simple System Calls . 7
5.2.4 Argument Passing . 8

5.3 Tests . 8
5.4 Scoring . 8

6 Checkpoint 2 9
6.1 Background . 9

6.1.1 Virtual Memory Layout . 9
6.1.2 Accessing User Memory . 10

6.2 Requirements . 11
6.2.1 Accessing User Memory Correctly . 11
6.2.2 System Calls: Processes . 11
6.2.3 More Processes . 12
6.2.4 Process Termination Messages . 12

6.3 Tests . 12
6.4 Scoring . 13

7 Final Code and Report Handin 14
7.1 Background . 14
7.2 Requirements . 14

7.2.1 System Calls: File System . 14
7.2.2 Denying Writes to Executables . 15

7.3 Tests . 15

1

7.4 Final Report . 15
7.5 Scoring . 15

8 ε Bonus 15
8.1 Other System Calls . 15

9 References 16
9.1 80x86 Calling Convention . 16

9.1.1 Program Startup Details . 16
9.1.2 System Call Details . 17

9.2 FAQ . 18
9.2.1 Argument Passing FAQ . 19
9.2.2 System Calls FAQ . 19

2

1 Overview

In this project, you’ll be implementing key parts of an operating system (Pintos) that allow user programs
like wordcount to run. Along the way, you’ll encounter familiar concepts, including:

• System Calls

• Processes/Threads

• File descriptors

• Userspace vs. Kernel

• Address Spaces

We divide this project to three checkpoints, each described separately with necessary background and
checkpoint requirements. Every checkpoint is based on the understanding and implementation of former
checkpoints.

In completing this project, we hope you’ll have a more concrete understanding of these concepts and
some hands-on experience with some actual code involved in running userspace programs.

2 Code style and commit messages

10 points of your final checkpoint 3 grade is ”Efficient Design + Clean Code”. Your GitHub commit messages
and git hygiene are part of this criterion. You should write your commit messages professionally,
and you should never commit binaries/temporary files to GitHub, or you may lose a point
here.

3 User Programs

Now that you’ve worked with Pintos and are becoming familiar with its infrastructure and thread package,
it’s time to start working on the parts of the system that allow running user programs. The base code
already supports loading and running user programs, but no I/O or interactivity is possible. In this project,
you will enable programs to interact with the OS via system calls.

3

4 Getting Started

The skeleton we’ve added for project 2 is available in the group0 github repo, and you can work on project
2 on top of project 1 or start from scratch. If you’re using Vagrant, you can pull the skeleton by running
the following command:

cd ~/code/group

git checkout master

git pull staff master

cd src/userprog/

make

make check

If this doesn’t work for you, double-check that the group0 repo is setup as a tracked repository:

git remote -v

You should see staff linked to the group0 repo. If not, add the group0 repo and try again:

git remote add staff git@github.com:Berkeley-CS162/group0.git

If you’d like to start from scratch, you can branch from staff/master:

git checkout -b <new-branch-name> staff/master

If these commands don’t work for you or you aren’t sure how to setup git, please try the following (most
preferred solution first):

1. Read the spec

2. Read the spec again

3. Look on Google

4. Ask a classmate

5. Ask a GSI

6. Post a question on Piazza

4

5 Checkpoint 1

This checkpoint is due Friday 3/20 11:59:59 PM. Submit your code to the release/proj2/checkpoint1
branch.

5.1 Background

User programs are written under the illusion that they have the entire machine, which means that the operat-
ing system must manage/protect machine resources correctly to maintain this illusion for multiple processes.
In Pintos, more than one process can run at a time, but each process is single-threaded (multithreaded
processes are not supported).

5.1.1 Source Files

In this project, you’ll be working with a large number of files, primarily in the userprog directory. To help
you parse through all the code, we’ve selected some key files and described them below:

process.c

process.h Loads ELF binaries and starts processes.

pagedir.c

pagedir.h A simple manager for 80x86 hardware page tables. Although you probably won’t want to modify
this code for this project, you may want to call some of its functions.

userprog/syscall.c

userprog/syscall.h Whenever a user process wants to access some kernel functionality, it invokes a system
call. This is a skeleton system call handler. Currently, it terminates the user process in the case of exit
and does nothing else for the other system calls.

lib/user/syscall.c

lib/user/syscall.h These functions provide a way for user processes to invoke each system call from a C
program. Each uses a little inline assembly code to invoke the system call. We don’t expect you to
understand this assembly code, but we do expect you to understand the calling conventions described
by your TA in section (also in Reference).

lib/syscall-nr.h This file defines the system call numbers for each system call.

exception.c

exception.h When a user process performs a privileged or prohibited operation, it traps into the kernel
as an “exception” or “fault.”(3) These files handle exceptions. Currently all exceptions simply print
a message and terminate the process. Some, but not all, solutions to project 2 require modifying
page fault() in this file.

gdt.c

gdt.h The 80x86 is a segmented architecture. The Global Descriptor Table (GDT) is a table that describes
the segments in use. These files set up the GDT. You should not need to modify these files for any of
the projects. You can read the code if you’re interested in how the GDT works.

tss.c

tss.h The Task-State Segment (TSS) is used for 80x86 architectural task switching. Pintos uses the TSS
only for switching stacks when a user process enters an interrupt handler, as does Linux. You should
not need to modify these files for any of the projects. You can read the code if you’re interested in
how the TSS works.

5

5.1.2 Using the File System

You will need to interface to the file system code for this project, because user programs are loaded from
the file system and many of the system calls you must implement deal with the file system. However, the
focus of this project is not the file system, so we have provided a simple but complete file system in the
filesys directory. You will want to look over the filesys.h and file.h interfaces to understand how to use the
file system, and especially its many limitations.

There is no need to modify the file system code for this project, and so we recommend that you do not.
Working on the file system is likely to distract you from this project’s focus.

Proper use of the file system routines will make life much easier, but we won’t do it in this project.
Because of that, you will have to tolerate the following limitations:

• No internal synchronization. Concurrent accesses will interfere with one another. You should use
synchronization to ensure that only one process at a time is executing file system code.

• File size is fixed at creation time. The root directory is represented as a file, so the number of files
that may be created is also limited.

• File data is allocated as a single extent, that is, data in a single file must occupy a contiguous range
of sectors on disk. External fragmentation can therefore become a serious problem as a file system is
used over time.

• No subdirectories.

• File names are limited to 14 characters.

• A system crash mid-operation may corrupt the disk in a way that cannot be repaired automatically.
There is no file system repair tool anyway.

One important feature is included:

• Unix-like semantics for filesys remove() are implemented. That is, if a file is open when it is removed,
its blocks are not deallocated and it may still be accessed by any threads that have it open, until the
last one closes it. See Removing an Open File, for more information.

You need to be able to create a simulated disk with a file system partition. The pintos-mkdisk program
provides this functionality. From the userprog/build directory, execute pintos-mkdisk filesys.dsk --filesys-size=2.
This command creates a simulated disk named filesys.dsk that contains a 2 MB Pintos file system partition.
Then format the file system partition by passing -f -q on the kernel’s command line: pintos -f -q. The
-f option causes the file system to be formatted, and -q causes Pintos to exit as soon as the format is done.

You’ll need a way to copy files in and out of the simulated file system. The pintos -p (“put”) and -g

(“get”) options do this. To copy file into the Pintos file system, use the command pintos -p file -- -q.
(The -- is needed because -p is for the pintos script, not for the simulated kernel.) To copy it to the
Pintos file system under the name newname, add -a newname: pintos -p file -a newname -- -q. The
commands for copying files out of a VM are similar, but substitute -g for -p.

Incidentally, these commands work by passing special commands extract and append on the kernel’s
command line and copying to and from a special simulated “scratch” partition. If you’re very curious, you
can look at the pintos script as well as filesys/fsutil.c to learn the implementation details.

Here’s a summary of how to create a disk with a file system partition, format the file system, copy the
echo program into the new disk, and then run echo, passing argument x. (Argument passing won’t work until
you implemented it.) It assumes that you’ve already built the examples in examples and that the current
directory is userprog/build:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -f -q

pintos -p ../../examples/echo -a echo -- -q

pintos -q run ’echo x’

6

The three final steps can actually be combined into a single command:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -p ../../examples/echo -a echo -- -f -q run ’echo x’

If you don’t want to keep the file system disk around for later use or inspection, you can even combine all
four steps into a single command. The --filesys-size=n option creates a temporary file system partition
approximately n megabytes in size just for the duration of the pintos run. The Pintos automatic test suite
makes extensive use of this syntax:

pintos --filesys-size=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

You can delete a file from the Pintos file system using the rm file kernel action, e.g. pintos -q rm file.
Also, ls lists the files in the file system and cat file prints a file’s contents to the display.

5.1.3 How User Programs Work

Pintos can run normal C programs, as long as they fit into memory and use only the system calls you
implement. Notably, malloc() cannot be implemented because none of the system calls required for this
project allow for memory allocation. Pintos also can’t run programs that use floating point operations, since
the kernel doesn’t save and restore the processor’s floating-point unit when switching threads.

The src/examples directory contains a few sample user programs. The Makefile in this directory compiles
the provided examples, and you can edit it to compile your own programs as well. Pintos can load ELF
executables with the loader provided for you in userprog/process.c.

Until you copy a test program to the simulated file system (see 5.1.2 Using the File System), Pintos
will be unable to do useful work. You should create a clean reference file system disk and copy that over
whenever you trash your filesys.dsk beyond a useful state, which may happen occasionally while debugging.

5.2 Requirements

5.2.1 Design Document

The design template for this project located on Piazza will contain specific questions designed to get you
thinking and reading about the code in this project. It will also include space for you to detail how your
group is planning to implement the functionality for the next two checkpoints. Please attach your design
document in an email to your GSI in similar fashion to project 1.

5.2.2 Design Review

Setup a 30-minute meeting with your GSI. You should be able to answer questions about the project.

5.2.3 Simple System Calls

To support user programs, the operating system must be able to provide requested resources/functionality
via syscalls, which are handled by the system call handler in userprog/syscall.c. The skeleton implementation
provided “handles” system calls by terminating the process if the exit syscalls was passed in. You will need
to add functionality to the syscall handler to do the following:

1. Retrieve the system call number

2. Retrieve system call arguments

3. Carry out the appropriate actions described below for each syscall:

7

Note: Because there are a large number of system calls, it is much better style to use a table of system
calls or switch-case statement rather than a huge nested if-then-else block (see the shell commands in hw1
for a good example of this).

Also, in preparation for future checkpoints, please implement the following system calls.

System Call: int null (int i) A ”fake” system call that doesn’t exist in any modern operating system.
You will implement this to get familiar with the system call interface. This system call increments the
passed in integer argument by 1 and returns it to the user.

System Call: int write (int fd, const void *buffer, unsigned size) A dummy version of write that
prints the userspace pointer passed in to stdout, trusting that the userspace pointer is safe to access.
Returns the number of bytes actually written, which may be less than size if some bytes could not be
written.

System Call: void exit (int status) Terminates the current user program, returning status to the ker-
nel.

5.2.4 Argument Passing

Currently, process_execute() does not support passing arguments to new processes. Every user program
will page fault immediately until argument passing is implemented. Implement argument passing by extend-
ing process_execute() so that instead of simply taking a program file name as its argument, it divides it
into words at spaces. The first word is the program name, the second word is the first argument, and so on.
That is, process_execute("grep foo bar") should run grep passing two arguments foo and bar.

Within a command line, multiple spaces are equivalent to a single space, so that process_execute("grep foo bar")

is equivalent to our original example. You can impose a reasonable limit on the length of the command line
arguments. For example, you could limit the arguments to those that will fit in a single page (4 kB). (Do
not base your limit on the maximum 128 byte command-line arguments that the pintos utility can pass to
the kernel.)

You can parse argument strings any way you like. If you’re lost, look at strtok_r(), prototyped in
lib/string.h and implemented with thorough comments in lib/string.c. You can find more about it by
looking at the man page (run man strtok_r at the prompt).

See section 9.1.1 Program Startup Details, for information on exactly how you need to set up the stack.
After this checkpoint, your group should have an easy way to add future syscalls to your existing syscall

handler (the cleanest approach is to use a table).

5.3 Tests

The following pintos tests should pass for Checkpoint 1: (try ./prepare ch1 in the userprog/ directory)

exit

iloveos

null-test

args-dbl-space

args-many

args-multiple

args-none

args-single

5.4 Scoring

Design Document: 10 points
Design Review: 10 points
Simple System Calls: 5 points

8

6 Checkpoint 2

This checkpoint is due Friday 4/3 11:59:59 PM. Submit your code to the release/proj2/checkpoint2
branch.

6.1 Background

6.1.1 Virtual Memory Layout

Virtual memory in Pintos is divided into two regions: user virtual memory and kernel virtual memory. User
virtual memory ranges from virtual address 0 up to PHYS BASE, which is defined in threads/vaddr.h and
defaults to 0xC0000000 (3 GB). Kernel virtual memory occupies the rest of the virtual address space, from
PHYS BASE up to 4 GB.

User virtual memory is per-process. When the kernel switches from one process to another, it also switches
user virtual address spaces by changing the processor’s page directory base register (see pagedir_activate()
in userprog/pagedir.c). struct thread contains a pointer to a process’s page table.

Kernel virtual memory is global. It is always mapped the same way, regardless of what user process
or kernel thread is running. In Pintos, kernel virtual memory is mapped one-to-one to physical memory,
starting at PHYS BASE. That is, virtual address PHYS BASE accesses physical address 0, virtual address
PHYS BASE + 0x1234 accesses physical address 0x1234, and so on up to the size of the machine’s physical
memory.

A user program can only access its own user virtual memory. An attempt to access kernel virtual memory
causes a page fault, handled by page_fault() in userprog/exception.c, and the process will be terminated.
Kernel threads can access both kernel virtual memory and, if a user process is running, the user virtual
memory of the running process. However, even in the kernel, an attempt to access memory at an unmapped
user virtual address will cause a page fault.

Typical Memory Layout Conceptually, each process is free to lay out its own user virtual memory
however it chooses. In practice, user virtual memory is laid out like this:

PHYS_BASE +----------------------------------+

| user stack |

| | |

| | |

| V |

| grows downward |

| |

| |

| |

| |

| grows upward |

| ^ |

| | |

| | |

+----------------------------------+

| uninitialized data segment (BSS) |

+----------------------------------+

| initialized data segment |

+----------------------------------+

| code segment |

0x08048000 +----------------------------------+

| |

9

| |

| |

| |

| |

0 +----------------------------------+

6.1.2 Accessing User Memory

As part of a system call, the kernel must often access memory through pointers provided by a user program.
The kernel must be very careful about doing so, because the user can pass a null pointer, a pointer to un-
mapped virtual memory, or a pointer to kernel virtual address space (above PHYS BASE). All of these types
of invalid pointers must be rejected without harm to the kernel or other running processes, by terminating
the offending process and freeing its resources.

There are at least two reasonable ways to do this correctly. The first method is to verify the validity of
a user-provided pointer, then dereference it. If you choose this route, you’ll want to look at the functions in
userprog/pagedir.c and in threads/vaddr.h. This is the simplest way to handle user memory access.

The second method is to check only that a user pointer points below PHYS BASE, then dereference it. An
invalid user pointer will cause a “page fault” that you can handle by modifying the code for page_fault() in
userprog/exception.c. This technique is normally faster because it takes advantage of the processor’s MMU,
so it tends to be used in real kernels (including Linux).

In either case, you need to make sure not to “leak” resources. For example, suppose that your system call
has acquired a lock or allocated memory with malloc(). If you encounter an invalid user pointer afterward,
you must still be sure to release the lock or free the page of memory. If you choose to verify user pointers
before dereferencing them, this should be straightforward. It’s more difficult to handle if an invalid pointer
causes a page fault, because there’s no way to return an error code from a memory access. Therefore, for
those who want to try the latter technique, we’ll provide a little bit of helpful code:

/* Reads a byte at user virtual address UADDR.

UADDR must be below PHYS_BASE.

Returns the byte value if successful, -1 if a segfault

occurred. */

static int

get_user (const uint8_t *uaddr)

{

int result;

asm ("movl $1f, %0; movzbl %1, %0; 1:"

: "=&a" (result) : "m" (*uaddr));

return result;

}

/* Writes BYTE to user address UDST.

UDST must be below PHYS_BASE.

Returns true if successful, false if a segfault occurred. */

static bool

put_user (uint8_t *udst, uint8_t byte)

{

int error_code;

asm ("movl $1f, %0; movb %b2, %1; 1:"

: "=&a" (error_code), "=m" (*udst) : "q" (byte));

return error_code != -1;

}

10

6.2 Requirements

6.2.1 Accessing User Memory Correctly

Implement one of the two approaches described in section 6.1.2 Accessing User Memory.

6.2.2 System Calls: Processes

In this checkpoint, you will be writing the wait, exec, and exit system calls. In pintos, there is a 1 to
1 mapping between processes and threads. Thus, add structs to thread.h to encapsulate logic needed for
communication between child and parent processes for waiting and exiting. Implement the following system
calls.

System Call: void halt (void) Terminates Pintos by calling shutdown_power_off() (declared in threads/init.h).
This should be seldom used, because you lose some information about possible deadlock situations,
etc.

System Call: void exit (int status) Terminates the current user program, returning status to the ker-
nel. If the process’s parent waits for it (see below), this is the status that will be returned. Conven-
tionally, a status of 0 indicates success and nonzero values indicate errors. Every user program that
finishes in the normal way calls exit - even a program that returns from main() calls exit indirectly
(see start() in lib/user/entry.c).

System Call: pid t exec (const char *cmd line) Runs the executable whose name is given in cmd_line,
passing any given arguments, and returns the new process’s program id (pid). Must return pid -1,
which otherwise should not be a valid pid, if the program cannot load or run for any reason. Thus,
the parent process cannot return from the exec until it knows whether the child process successfully
loaded its executable. You must use appropriate synchronization to ensure this. For this checkpoint,
your exec is allowed to work without the command-line, but you must implement the functionality
necessary for exec to work with wait.

System Call: int wait (pid t pid) Waits for a child process pid and retrieves the child’s exit status.

If pid is still alive, waits until it terminates. Then, returns the status that pid passed to exit. If pid
did not call exit(), but was terminated by the kernel (e.g. killed due to an exception), wait(pid)
must return -1. It is perfectly legal for a parent process to wait for child processes that have already
terminated by the time the parent calls wait, but the kernel must still allow the parent to retrieve its
child’s exit status, or learn that the child was terminated by the kernel.

wait must fail and return -1 immediately if any of the following conditions is true:

• pid does not refer to a direct child of the calling process. pid is a direct child of the calling process
if and only if the calling process received pid as a return value from a successful call to exec.

Note that children are not inherited: if A spawns child B and B spawns child process C, then
A cannot wait for C, even if B is dead. A call to wait(C) by process A must fail. Similarly,
orphaned processes are not assigned to a new parent if their parent process exits before they do.

• The process that calls wait has already called wait on pid. That is, a process may wait for any
given child at most once.

Processes may spawn any number of children, wait for them in any order, and may even exit without
having waited for some or all of their children. Your design should consider all the ways in which waits
can occur. All of a process’s resources, including its struct thread, must be freed whether its parent
ever waits for it or not, and regardless of whether the child exits before or after its parent.

11

You must ensure that Pintos does not terminate until the initial process exits. The supplied Pintos code
tries to do this by calling process_wait() (in userprog/process.c) from main() (in threads/init.c). We
suggest that you implement process_wait() according to the comment at the top of the function and
then implement the wait system call in terms of process_wait().

Warning: Implementing this system call requires considerably more work than any of the
rest.

Note: You must synchronize system calls so that any number of user processes can make them at once.
In particular, it is not safe to call into the file system code provided in the filesys directory from multiple
threads at once. Your system call implementation must treat the file system code as a critical section. Don’t
forget that process_execute() also accesses files. For now, we recommend against modifying code in the
filesys directory.

If a system call is passed an invalid argument, acceptable options include returning an error value (for
those calls that return a value), returning an undefined value, or terminating the process.

6.2.3 More Processes

Implement the logic in process_wait and process_exit in process.c. How to do so was discussed in section
during the week of March 19.

Next, implement the logic for process_execute. process execute should create a new thread that calls
start_process, which will try to load the binary program and if successful, initialize values for communi-
cation between child and parent processes. It will then start the user program.

To implement syscalls, you need to provide ways to read and write data in user virtual address space. You
need this ability before you can even obtain the system call number, because the system call number is on the
user’s stack in the user’s virtual address space. This can be a bit tricky: what if the user provides an invalid
pointer, a pointer into kernel memory, or a block partially in one of those regions? You should handle these
cases by terminating the user process. We recommend writing and testing this code before implementing
any other system call functionality. See the 6.1.2 Accessing User Memory for more information.

When you’re done with this part, Pintos should forevermore be bulletproof. Nothing that a user program
can do should ever cause the OS to crash, panic, fail an assertion, or otherwise malfunction.

6.2.4 Process Termination Messages

Whenever a user process terminates, because it called exit or for any other reason, print the process’s name
and exit code, formatted as if printed by printf ("%s: exit(%d)\n", ...);. The name printed should
be the full name passed to process_execute(), omitting command-line arguments. Do not print these
messages when a kernel thread that is not a user process terminates, or when the halt system call is invoked.
The message is optional when a process fails to load.

Aside from this, don’t print any other messages that Pintos as provided doesn’t already print. You may
find extra messages useful during debugging, but they will confuse the grading scripts and thus lower your
score.

6.3 Tests

The following pintos tests should produce correct output for Checkpoint 2. (try ./prepare ch2 in the
userprog/ directory)

wait-bad-pid

wait-killed

wait-simple

wait-twice

exec-multiple

12

exec-once

exec-missing

exec-bad-ptr

halt

exit

6.4 Scoring

Each test is worth 0.5 points for a combined score of 5 points.

13

7 Final Code and Report Handin

This checkpoint is due Friday 4/10 11:59:59 PM. Submit your code to the release/proj2/checkpoint3
branch. The final report is due Monday 4/13 11:59:59 PM. Note that each slip-day for this checkpoint
pushes both the final report and code deadlines back by one day. If you decide to use slip-days, please include
the number of slip-days you are using in the final report submission (we will verify this number against your
group’s total as well as your code submission).

7.1 Background

There is no new background for this checkpoint.

7.2 Requirements

7.2.1 System Calls: File System

Implement the following system calls.

System Call: bool create (const char *file, unsigned initial size) Creates a new file called file ini-
tially initial size bytes in size. Returns true if successful, false otherwise. Creating a new file does not
open it: opening the new file is a separate operation which would require a open system call.

System Call: bool remove (const char *file) Deletes the file called file. Returns true if successful,
false otherwise. A file may be removed regardless of whether it is open or closed, and removing an
open file does not close it. See Removing an Open File, for details.

System Call: int open (const char *file) Opens the file called file. Returns a nonnegative integer han-
dle called a “file descriptor” (fd), or -1 if the file could not be opened.

File descriptors numbered 0 and 1 are reserved for the console: fd 0 (STDIN_FILENO) is standard input,
fd 1 (STDOUT_FILENO) is standard output. The open system call will never return either of these file
descriptors, which are valid as system call arguments only as explicitly described below.

Each process has an independent set of file descriptors. File descriptors are not inherited by child
processes.

When a single file is opened more than once, whether by a single process or different processes, each
open returns a new file descriptor. Different file descriptors for a single file are closed independently
in separate calls to close and they do not share a file position.

System Call: int filesize (int fd) Returns the size, in bytes, of the file open as fd.

System Call: int read (int fd, void *buffer, unsigned size) Reads size bytes from the file open as fd
into buffer. Returns the number of bytes actually read (0 at end of file), or -1 if the file could not be
read (due to a condition other than end of file). Fd 0 reads from the keyboard using input_getc().

System Call: int write (int fd, const void *buffer, unsigned size) Writes size bytes from buffer to
the open file fd. Returns the number of bytes actually written, which may be less than size if some
bytes could not be written.

Writing past end-of-file would normally extend the file, but file growth is not implemented by the basic
file system. The expected behavior is to write as many bytes as possible up to end-of-file and return
the actual number written, or 0 if no bytes could be written at all.

Fd 1 writes to the console. Your code to write to the console should write all of buffer in one call to
putbuf(), at least as long as size is not bigger than a few hundred bytes. (It is reasonable to break up
larger buffers.) Otherwise, lines of text output by different processes may end up interleaved on the
console, confusing both human readers and our grading scripts.

14

System Call: void seek (int fd, unsigned position) Changes the next byte to be read or written in
open file fd to position, expressed in bytes from the beginning of the file. (Thus, a position of 0 is the
file’s start.)

A seek past the current end of a file is not an error. A later read obtains 0 bytes, indicating end of file.
A later write extends the file, filling any unwritten gap with zeros. (However, in Pintos files have a
fixed length until project 4 is complete, so writes past end of file will return an error.) These semantics
are implemented in the file system and do not require any special effort in system call implementation.

System Call: unsigned tell (int fd) Returns the position of the next byte to be read or written in open
file fd, expressed in bytes from the beginning of the file.

System Call: void close (int fd) Closes file descriptor fd. Exiting or terminating a process implicitly
closes all its open file descriptors, as if by calling this function for each one.

7.2.2 Denying Writes to Executables

Add code to deny writes to files in use as executables. Many OSes do this because of the unpredictable
results if a process tried to run code that was in the midst of being changed on disk.

You can use file_deny_write() to prevent writes to an open file. Calling file_allow_write() on the
file will re-enable them (unless the file is denied writes by another opener). Closing a file will also re-enable
writes. Thus, to deny writes to a process’s executable, you must keep it open as long as the process is still
running.

7.3 Tests

All of the 78 Pintos userprog tests should pass for this checkpoint. We will weight each of these tests equally
in determining your final score. (try ./prepare ch3 in the userprog/ directory)

7.4 Final Report

For your final report, please email your GSI with a polished report describing your implementation of the
project, following the template in the initial design. Please create a new section in this document
called ”Final Design Changes” detailing the major changes to your design and why you changed
them.

7.5 Scoring

• 78 Pintos Tests, equally weighted - 50 points

• Final Report - 10 points

• Efficient Design + Clean Code - 10 points

8 ε Bonus

ε Bonus doesn’t have any points.

8.1 Other System Calls

Implement other system calls in pintos codes.

15

9 References

This section contains a lot of information, some of which is required for understanding the project, and some
of which is optional to read.

9.1 80x86 Calling Convention

This section summarizes important points of the convention used for normal function calls on 32-bit 80x86
implementations of Unix. Some details are omitted for brevity. If you do want all the details, refer to [
SysV-i386].

The calling convention works like this:

1. The caller pushes each of the function’s arguments on the stack one by one, normally using the PUSH
assembly language instruction. Arguments are pushed in right-to-left order.

The stack grows downward: each push decrements the stack pointer, then stores into the location it
now points to, like the C expression *--sp = value.

2. The caller pushes the address of its next instruction (the return address) on the stack and jumps to
the first instruction of the callee. A single 80x86 instruction, CALL, does both.

3. The callee executes. When it takes control, the stack pointer points to the return address, the first
argument is just above it, the second argument is just above the first argument, and so on.

4. If the callee has a return value, it stores it into register EAX.

5. The callee returns by popping the return address from the stack and jumping to the location it specifies,
using the 80x86 RET instruction.

6. The caller pops the arguments off the stack.

Consider a function f() that takes three int arguments. This diagram shows a sample stack frame as
seen by the callee at the beginning of step 3 above, supposing that f() is invoked as f(1, 2, 3). The initial
stack address is arbitrary:

+----------------+

0xbffffe7c | 3 |

0xbffffe78 | 2 |

0xbffffe74 | 1 |

stack pointer --> 0xbffffe70 | return address |

+----------------+

9.1.1 Program Startup Details

The Pintos C library for user programs designates _start(), in lib/user/entry.c, as the entry point for user
programs. This function is a wrapper around main() that calls exit() if main() returns:

void

_start (int argc, char *argv[])

{

exit (main (argc, argv));

}

16

http://cs162.eecs.berkeley.edu/pintos_13.html

The kernel must put the arguments for the initial function on the stack before it allows the user program
to begin executing. The arguments are passed in the same way as the normal calling convention (see section
9.1 80x86 Calling Convention).

Consider how to handle arguments for the following example command: /bin/ls -l foo bar. First,
break the command into words: /bin/ls, -l, foo, bar. Place the words at the top of the stack. Order doesn’t
matter, because they will be referenced through pointers.

Then, push the address of each string plus a null pointer sentinel, on the stack, in right-to-left order.
These are the elements of argv. The null pointer sentinel ensures that argv[argc] is a null pointer, as
required by the C standard. The order ensures that argv[0] is at the lowest virtual address. Word-aligned
accesses are faster than unaligned accesses, so for best performance round the stack pointer down to a
multiple of 4 before the first push.

Then, push argv (the address of argv[0]) and argc, in that order. Finally, push a fake “return address”:
although the entry function will never return, its stack frame must have the same structure as any other.

The table below shows the state of the stack and the relevant registers right before the beginning of the
user program, assuming PHYS BASE is 0xc0000000:

Address Name Data Type
0xbffffffc argv[3][...] bar\0 char[4]

0xbffffff8 argv[2][...] foo\0 char[4]

0xbffffff5 argv[1][...] -l\0 char[3]

0xbfffffed argv[0][...] /bin/ls\0 char[8]

0xbfffffec word-align 0 uint8_t

0xbfffffe8 argv[4] 0 char *

0xbfffffe4 argv[3] 0xbffffffc char *

0xbfffffe0 argv[2] 0xbffffff8 char *

0xbfffffdc argv[1] 0xbffffff5 char *

0xbfffffd8 argv[0] 0xbfffffed char *

0xbfffffd4 argv 0xbfffffd8 char **

0xbfffffd0 argc 4 int

0xbfffffcc return address 0 void (*) ()
In this example, the stack pointer would be initialized to 0xbfffffcc.
As shown above, your code should start the stack at the very top of the user virtual address space, in

the page just below virtual address PHYS_BASE (defined in threads/vaddr.h).
You may find the non-standard hex_dump() function, declared in <stdio.h>, useful for debugging your

argument passing code. Here’s what it would show in the above example:

bfffffc0 00 00 00 00 ||

bfffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bfffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

9.1.2 System Call Details

The first project already dealt with one way that the operating system can regain control from a user
program: interrupts from timers and I/O devices. These are “external” interrupts, because they are caused
by entities outside the CPU. The operating system also deals with software exceptions, which are events
that occur in program code. These can be errors such as a page fault or division by zero. Exceptions are
also the means by which a user program can request services (“system calls”) from the operating system.

In the 80x86 architecture, the int instruction is the most commonly used means for invoking system calls.
This instruction is handled in the same way as other software exceptions. In Pintos, user programs invoke

17

int $0x30 to make a system call. The system call number and any additional arguments are expected to
be pushed on the stack in the normal fashion before invoking the interrupt (see section 9.1 80x86 Calling
Convention).

Thus, when the system call handler syscall_handler() gets control, the system call number is in
the 32-bit word at the caller’s stack pointer, the first argument is in the 32-bit word at the next higher
address, and so on. The caller’s stack pointer is accessible to syscall_handler() as the esp member of the
struct intr_frame passed to it. (struct intr_frame is on the kernel stack.)

The 80x86 convention for function return values is to place them in the EAX register. System calls that
return a value can do so by modifying the eax member of struct intr_frame.

You should try to avoid writing large amounts of repetitive code for implementing system calls. Each
system call argument, whether an integer or a pointer, takes up 4 bytes on the stack. You should be able to
take advantage of this to avoid writing much near-identical code for retrieving each system call’s arguments
from the stack.

9.2 FAQ

The following questions have been frequently asked by Stanford students in their operating systems class,
and even though we know you’re 1000 times more intelligent, we’ve included them here as reference.

How much code will I need to write? Here’s a summary of our reference solution, produced by the
diffstat program. The final row gives total lines inserted and deleted; a changed line counts as both an
insertion and a deletion.

The reference solution represents just one possible solution. Many other solutions are also possible and
many of those differ greatly from the reference solution. Some excellent solutions may not modify all
the files modified by the reference solution, and some may modify files not modified by the reference
solution.

threads/thread.c | 13

threads/thread.h | 26 +

userprog/exception.c | 8

userprog/process.c | 247 ++++++++++++++--

userprog/syscall.c | 468 ++++++++++++++++++++++++++++++-

userprog/syscall.h | 1

6 files changed, 725 insertions(+), 38 deletions(-)

The kernel always panics when I run pintos -p file -- -q. Did you format the file system (with
pintos -f)?

Is your file name too long? The file system limits file names to 14 characters. A command like
pintos -p ../../examples/echo -- -q will exceed the limit. Use
pintos -p ../../examples/echo -a echo -- -q to put the file under the name echo instead.

Is the file system full?

Does the file system already contain 16 files? The base Pintos file system has a 16-file limit.

The file system may be so fragmented that there’s not enough contiguous space for your file.

When I run pintos -p ../file --, file isn’t copied. Files are written under the name you refer to
them, by default, so in this case the file copied in would be named ../file. You probably want to run
pintos -p ../file -a file -- instead.

You can list the files in your file system with pintos -q ls.

18

All my user programs die with page faults. This will happen if you haven’t implemented argument
passing (or haven’t done so correctly). The basic C library for user programs tries to read argc and
argv off the stack. If the stack isn’t properly set up, this causes a page fault.

All my user programs die with system call! You’ll have to implement system calls before you see any-
thing else. Every reasonable program tries to make at least one system call (exit()) and most programs
make more than that. Notably, printf() invokes the write system call. The default system call han-
dler just prints system call! and terminates the program. Until then, you can use hex_dump() to
convince yourself that argument passing is implemented correctly (see section 9.1.1 Program Startup
Details).

How can I disassemble user programs? The objdump (80x86) or i386-elf-objdump (SPARC) utility
can disassemble entire user programs or object files. Invoke it as objdump -d file. You can use GDB’s
disassemble command to disassemble individual functions (see section E.5 GDB).

Why do many C include files not work in Pintos programs?

Can I use libfoo in my Pintos programs? The C library we provide is very limited. It does not in-
clude many of the features that are expected of a real operating system’s C library. The C library
must be built specifically for the operating system (and architecture), since it must make system calls
for I/O and memory allocation. (Not all functions do, of course, but usually the library is compiled as
a unit.)

The chances are good that the library you want uses parts of the C library that Pintos doesn’t imple-
ment. It will probably take at least some porting effort to make it work under Pintos. Notably, the
Pintos user program C library does not have a malloc() implementation.

How do I compile new user programs? Modify src/examples/Makefile, then run make.

Can I run user programs under a debugger? Yes, with some limitations. See section E.5 GDB.

What’s the difference between tid t and pid t? A tid_t identifies a kernel thread, which may have a
user process running in it (if created with process_execute()) or not (if created with thread_create()).
It is a data type used only in the kernel.

A pid_t identifies a user process. It is used by user processes and the kernel in the exec and wait
system calls.

You can choose whatever suitable types you like for tid_t and pid_t. By default, they’re both int.
You can make them a one-to-one mapping, so that the same values in both identify the same process,
or you can use a more complex mapping. It’s up to you.

9.2.1 Argument Passing FAQ

Isn’t the top of stack in kernel virtual memory? The top of stack is at PHYS_BASE, typically 0xc0000000,
which is also where kernel virtual memory starts. But before the processor pushes data on the stack,
it decrements the stack pointer. Thus, the first (4-byte) value pushed on the stack will be at address
0xbffffffc.

Is PHYS BASE fixed? No. You should be able to support PHYS_BASE values that are any multiple of
0x10000000 from 0x80000000 to 0xf0000000, simply via recompilation.

9.2.2 System Calls FAQ

Can I just cast a struct file * to get a file descriptor?

19

http://cs162.eecs.berkeley.edu/pintos_10.html
http://cs162.eecs.berkeley.edu/pintos_10.html

Can I just cast a struct thread * to a pid t? You will have to make these design decisions yourself.
Most operating systems do distinguish between file descriptors (or pids) and the addresses of their
kernel data structures. You might want to give some thought as to why they do so before committing
yourself.

Can I set a maximum number of open files per process? It is better not to set an arbitrary limit.
You may impose a limit of 128 open files per process, if necessary.

What happens when an open file is removed? You should implement the standard Unix semantics
for files. That is, when a file is removed any process which has a file descriptor for that file may
continue to use that descriptor. This means that they can read and write from the file. The file will
not have a name, and no other processes will be able to open it, but it will continue to exist until all
file descriptors referring to the file are closed or the machine shuts down.

How can I run user programs that need more than 4 kB stack space? You may modify the stack
setup code to allocate more than one page of stack space for each process. This is not required in this
project.

What should happen if an exec fails midway through loading? exec should return -1 if the child
process fails to load for any reason. This includes the case where the load fails part of the way through
the process (e.g. where it runs out of memory in the multi-oom test). Therefore, the parent process
cannot return from the exec system call until it is established whether the load was successful or not.
The child must communicate this information to its parent using appropriate synchronization, such as
a semaphore, to ensure that the information is communicated without race conditions.

20

	Overview
	Code style and commit messages
	User Programs
	Getting Started
	Checkpoint 1
	Background
	Source Files
	Using the File System
	How User Programs Work

	Requirements
	Design Document
	Design Review
	Simple System Calls
	Argument Passing

	Tests
	Scoring

	Checkpoint 2
	Background
	Virtual Memory Layout
	Accessing User Memory

	Requirements
	Accessing User Memory Correctly
	System Calls: Processes
	More Processes
	Process Termination Messages

	Tests
	Scoring

	Final Code and Report Handin
	Background
	Requirements
	System Calls: File System
	Denying Writes to Executables

	Tests
	Final Report
	Scoring

	 Bonus
	Other System Calls

	References
	80x86 Calling Convention
	Program Startup Details
	System Call Details

	FAQ
	Argument Passing FAQ
	System Calls FAQ

