
Computer Science 162, Fall 2014
David Culler

University of California, Berkeley
Midterm 3

December 15, 2014

Name

SID

Login

TA Name

Section Time

This is a closed book exam with one 2-sided page of notes permitted. It is intended to be a 2 hour exam.
You have 3 hours to complete it. The number at the beginning of each question indicates the points for
that question. Write all of your answers directly on this paper. Make your answers as concise as possible.
If there is something in a question that you believe is open to interpretation, please raise your hand to
request clarification. When told to open the exam, put your login on every page and check that you have
them all. (Final page is for reference.)

By my signature below, I swear that this exam is my own work. I have not obtained answers or partial
answers from anyone. Furthermore, if I am taking the exam early, I promise not to discuss it with anyone
prior to completion of the regular exam, and otherwise I have not discussed it with anyone who took the
early alternate exam.

X_______________________________________

Grade Table (for instructor use only)

Question Points Score

1 25

2 25

3 25

4 25

5 0

Total: 100

Computer Science 162, Fall 2014 Midterm 3 - Page 2 of 26 December 15, 2014

1. (25 points) Operating Systems Concepts

(a) (18 points) Choose either true or false for the below questions. You do not need to provide
justifications.
i. (2 points) Digital certificates bind a host’s identity with its public key.√

True
© False

ii. (2 points) Asymmetric cryptography is much faster than symmetric cryptography.
© True
√

False
iii. (2 points) A transaction takes the state of a storage system from one consistent state to

another.√
True

© false
iv. (2 points) Only the commit entry in the redo log for a transaction need to be idempotent.

© True
√

False
v. (2 points) A shared log used by multiple processors to construct transactions can be cached

if the entries are in non-volatile storage with sequential consistency.√
True

© False
vi. (2 points) When the accept function on a TCP socket returns it is guaranteed that both the

connect on the client and the listen on the server have occured and the initial sequence number
is determined.√

True
© False

vii. (2 points) In the MapReduce framework, the Reducers receiver their chunks of map results
from each Mapper only after the Map phase has completed.

© True
√

False
viii. (2 points) According to the end-to-end principle, reliable network links allow the host end-

points to optimize how they handle communication because they can assume other layers will
handle loss.

© True
√

False
ix. (2 points) Recursive queries in a key-value store allow the directory to serialize puts and gets

and provide consistency even with replication.√
True

© False

(b) (2 points) Suppose a TCP connection is able to sustain an average window size of 10 KB with an
RTT of 20ms and a maximum packet size of 1000 B. Calculate the average bandwidth over the
connection.

Computer Science 162, Fall 2014 Midterm 3 - Page 3 of 26 December 15, 2014

Solution:
Little’s law. 10 x 10^3 B / 20 x 10^-3 s = 0.5 x 10^6 B/s or 4 mbps.

(c) (5 points) Which of the following is true? Select all the choices that apply.
√

Deadlocked threads will experience starvation.
© If there are deadlocked threads the system will eventually go idle.
√

Imposing ordering on the acquisition of multiple resources will prevent dead-
lock.

© Deadlock can happen when multiple processes contend for a single resource.
√

Preempting lock holders can eliminate deadlock but give rise to possible
livelock.

Computer Science 162, Fall 2014 Midterm 3 - Page 4 of 26 December 15, 2014

2. (25 points) Networked File System

The following provides a simple C library that provides functions to read the contents of a local file
into a dynamically allocated object and to write an object out to a file. Signatures are in the associated
include file. These are the procedures that we are going to run remotely as part of the RPC that
implements our networked file access. A simple main that uses this to cat a local file is in the code
appendix at the end of this problem. (We are going to give you C code for precision, but your solution
can be roughly C pseudocode.)

/* Simple file library */
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include "flib.h"

size_t readfile(char **fdata, char *filepath){
size_t fsize = 0;
char *fbuf = NULL;
FILE *fp = fopen(filepath,"r");
if (fp) { /* figure out the size */

fseek(fp, 0L, SEEK_END); /* seek to end */
fsize = ftell(fp); /* get position */
fseek(fp, 0L, SEEK_SET); /* seek to start */
fbuf = malloc(fsize);
fread(fbuf, sizeof(char), fsize, fp);

}
*fdata = fbuf;
return fsize;

}

ssize_t writefile(char *filepath, char *fdata, size_t dsize) {
FILE *fp = fopen(filepath, "w");
if (fp == NULL) return -1;
return fwrite(fdata, sizeof(char), dsize, fp);

}

You are going to build a simple user-level network file system using a remote procedure call mechanism
that you will create. Basically, it will read and write files on a remote machine using the operations in
the library above as the "remote procedures".

The following shows a simple program where the remote service is passed on the command line and the
client rpc mechanism (in cflib.c) is initialized and then used — just as in the local case — to read the
file which is on the remote server.

#include "cflib.h"

int main(int argc, char *argv[])
{

char *fdata;

Computer Science 162, Fall 2014 Midterm 3 - Page 5 of 26 December 15, 2014

if (argc < 4) {
fprintf(stderr,"usage %s filename hostname port\n", argv[0]);
exit(0);

}

char *filename = argv[1];
crpc_init(argv[2], atoi(argv[3])); /* initialize the RPC system */
size_t fsize = readfile(&fdata, filename); /* read remote file as if local */
fwrite(fdata, sizeof(char), fsize, stdout);
return 0;

}

To get you started here is a skeleton of the client RPC library, cflib.c. You can assume that socket_connect
sets up all the addressing, creates the socket, and connects it to the host and port as a TCP stream.

static char *host;
static int port;

void crpc_init(char *hostname, int portno) {
host = hostname;
port = portno;

}

int socket_connect(char *hostname, int portno);

size_t readfile(char **fdata, char *filepath) {

int sockfd = socket_connect(host, port); /* Create and connect the socket to server */

/* Implement me */

close(sockfd);
return ____________

}

ssize_t writefile(char *filepath, char *fdata, size_t dsize) {
/* write file function - we won’t write this*/
return 0;

}

Of course, a networked client needs a server. The appendix has a skeleton for your RPC server, which
contains the basic single-threaded socket protocol. It has a little driver so you can see how you might
start it up. All the ugly address stuff is there completeness. It calls the following.

void serveconnection(int newsockfd) {
/* you get to implement me */
}

Computer Science 162, Fall 2014 Midterm 3 - Page 6 of 26 December 15, 2014

(a) (9 points) Design the simpleNFS RPC protocol

Your protocol is to support two operations on remote files, readfile and writefile. Assume both the
client and server are 32 bit x86 machines running Ubuntu 14.04
i. (4 points) Draw a diagram and describe how you would write a protocol to handle these

actions end to end.

Solution: The client has an RPC stub library containing the functions readfile and write-
file. These will marshall the parameters by writing them to a socket connected to the RPC
server, along with an operation code indicating which operation to perform. The stub will
unmarshall the response and return it.
The server dispatches on the operation code, unmarshalls the parameters by reading from
the socket, calls the library function on its file system, and marshals the response.

ii. (5 points) Design an (effecient) format for the messages between server and client

Solution: Below is an example: The messages have an 8-byte code that determines the
format of the rest of the message, as follows.
RDOP | Pathname Size | Pathname |

8 4 (int) prev

RRESP | File Size | File Contents |
8 8 (long) prev

WTOP | Pathname Size | Pathname | File Size | File Contents |
8 4 (int) prev 8 (long) prev

WRESP | File Size |
8 8 (long)

(b) (4 points) Implement the simpleNFS RPC protocol for the client read operation in cflib.c, as per
the skeleton.
We are not interested in getting the syntax exactly right, but that you have all of the basic parts
in a simple, clear implementation of the design above
size_t readfile(char **fdata, char *filepath) {
/* declare what you need */
char* send_buf;

char* fdata;

int send_buf_size = 0;

int path_size = 0;

long file_size = 0;

__

Computer Science 162, Fall 2014 Midterm 3 - Page 7 of 26 December 15, 2014

__

int sockfd = socket_connect(host, port); /* Create and connect the socket to server */

write(sockfd, send_buf, send_buf_size);

read(sockfd, _____________, _____________);

__

read(sockfd, ____________, _______________);

close(sockfd);

return ____________
}

Solution:
size_t readfile(char **fdata, char *filepath) {

char *send_buf = NULL;
char respop[8];
int send_buf_size = 0;
int path_size = 0;
long file_size = 0;

path_size = strlen(filepath) + 1;
send_buf_size = path_size + 8 + sizeof(int);
send_buf = malloc(send_buf_size);

Computer Science 162, Fall 2014 Midterm 3 - Page 8 of 26 December 15, 2014

memcpy(send_buf, "RDOP", 5);
memcpy(send_buf + 8, &path_size, 4);
memcpy(send_buf + 8 + 4, filepath, pathsize);

write(sockfd, send_buf, send_buf_size);

/* Unmarshall read response from the socket: 8 byte RESP, long size, file data */
read(sockfd, respop, 8);
assert(strcmp(respop, "RRESP") == 0);
read(sockfd, &file_size, 8);
*fdata = (char *) malloc(file_size);
n = read(sockfd, *fdata, file_size);
if (n != file_size)

error("ERROR reading from socket");

free(send_buf);
close(sockfd);
return file_size;

}

Computer Science 162, Fall 2014 Midterm 3 - Page 9 of 26 December 15, 2014

(c) (4 points) Implement the corresponding server side for the read (just check for the write and make
it no-op) for the skeleton above. Assume this function is called when the server receives a socket
connection from the client with the corresponding client socket file descriptor.
void serveconnection(int newsockfd) {

char *fdata = NULL;
long fsize = 0;

/* invoke the file system method */
fsize = readfile(&fdata, ________________);

Computer Science 162, Fall 2014 Midterm 3 - Page 10 of 26 December 15, 2014

}

Solution:
void serveconnection(int newsockfd) {

char *fdata = NULL;
long fsize = 0;
char rpcop[8];
char respop[8] = "RRESP";
int pathsize = 0;
char *pathname = NULL;

/* Read request op from the socket */
read(newsockfd, rpcop, 8);
if (strcmp(rpcop, "RDOP") == 0) {

/* unmarshall parameters */
read(newsockfd, &pathsize, sizeof(pathsize));
pathname = (char *) malloc(pathsize);
read(newsockfd, pathname, pathsize);

/* invoke the file system method */
fsize = readfile(&fdata, pathname);

/* marshall the result */
write(newsockfd, respop, 8);
write(newsockfd, &fsize, sizeof(long));
write(newsockfd, fdata, fsize);

} else if (strcmp(rpcop,"WTOP") == 0) {
...

} else {
printf("unrecognized RPC operation\n");

}
}

(d) (2 points) Security Holes: What is the fundamental security flaw in this simple-NFS?

Computer Science 162, Fall 2014 Midterm 3 - Page 11 of 26 December 15, 2014

Solution:

Any client connecting to this server can access any files that the user under which the
service runs has access to. This would likely be root.

(e) (3 points) Naming: Explain in a few sentences how resolving the file pathname at the server, as
in this simpleNFS, is different from resolving them at the client. How does NFS address this issue
and provides a coherent file namespace at the client.

Solution:

This simpleNFS interprets the path name from the user home, current working directory
of the service process on the server, and ’/’ of the server, whereas the local file system
interprets the pathname reletive to the home, cwd, and root of the client. NFS addresses
this issue by mounting the remote file system within the directory structure of the client.
Traversal of the graph at the client arrives at the vnodes that are accessed on the server.

(f) (3 points) Security: Suppose that the server maintains a database of users and each file can be
associated with a user. Describe how you would modify the protocol above to use a asymmetric
key system to ensure that only the user associated with a file could access it remotely. How would
you further extend this to maintain confidentiality of the data?

Solution:

The server could record the public key for each user id. The request could include the user
id and this id encrypted with the user private key. The server decrypts it with the user
public key associated with the file and validates that it is the same user. It then encrypts
the file data with the public key, whereupon the client can decrypt it with the private key.

Computer Science 162, Fall 2014 Midterm 3 - Page 12 of 26 December 15, 2014

Code Appendix

/* Local reader example */
#include "flib.h"
int main(int argc, char *argv[])
{

char *fdata;
char *filename = argv[1];
size_t fsize = readfile(&fdata, filename); /* read the file */
fwrite(fdata, sizeof(char), fsize, stdout);
return 0;

}

/* Remote service wrapper */

int rpc_server(int portno)
{

struct sockaddr_in serv_addr;
struct sockaddr_in cli_addr;
uint clilen = sizeof(cli_addr);
int sockfd, newsockfd;

/* Create Socket to receive requests*/
sockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind socket to port */
memset((char *) &serv_addr,0,sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

error("ERROR on binding");
while (1) {

/* Listen for incoming connections */
listen(sockfd, MAXQUEUE);

/* Accept incoming connection, obtaining a new socket for it */
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

serveconnection(newsockfd); /* Service the request */

close(newsockfd);
}
printf("Server exiting\n");
close(sockfd);
return 0;

}

int main(int argc, char *argv[])

Computer Science 162, Fall 2014 Midterm 3 - Page 13 of 26 December 15, 2014

{
int portno;
if (argc < 2) {

fprintf(stderr,"ERROR, no port provided\n");
exit(1);

}
portno = atoi(argv[1]);
printf("Opening server on port %d\n",portno);
return rpc_server(portno);

}

Computer Science 162, Fall 2014 Midterm 3 - Page 14 of 26 December 15, 2014

3. (25 points) Two-Phase Commit and KV Store

This question will deal with the concept of atomic distributed consensus in the context of the 2-phase-
commit algorithm (that you implemented in your Project). However, we will dealing with a more
complex setup where the transaction coordinator can also crash at any point in time.

Please Note the following background about the setup :

• Throughout this question, assume that there is a transaction coordinator (master) and some slave
servers, which store each key-value pair. The replication factor is some number N > 1.

• The master and the slaves contain enough logic that they can reconnect with each other after
recovering from a crash. (All registration data and open sockets/ports are automatically restored
on rebuild)

• To refresh your memory , we have provided the state machine diagram for the coordinator and
the slaves : [Figure 1]

init

commit abort

wait

Vote-Req msg
sent to all cohorts

All slaves
agreed

Send Global_Commit
to all slaves

One or more slave(s)
replied Vote_Abort
Global_Abort sent

to all slaves

Coordinator

init

abort

commit

ready

Global-Abort
received

from Coordinator

Vote-Req
msg received

Vote-Abort sent
to Coordinator

Vote-Req
msg received

Vote-Commit sent
to Coordinator

Slaves

Global-Commit
received from
Coordinator

F,T

F,T

F,T

T Timeout Transition F Failure Transition F,T Failure/Timeout Transition

1	

2	

3a	 3b	

2	

4	

4	

Figure 1: Two phase commit.

(a) (6 points) A client makes a request PUT(k1, v1) to your key-value store. Fill in the blanks
(some blank lines might be extraneous) to denote the sequence of SEND(msg), RECEIVE(msg), and
LOG(msg) actions required to execute this client request, while maintaining the robustness of the
system to recover from node crashes of EITHER THE MASTER OR THE SLAVE. We have filled
in some lines as an example Please note the following to get maximum credit :

• Log the MINIMUM number of messages required.
• Ensure that the master behaves optimally across rebuilds. It must make decisions consistent

with the available votes of its slaves (timeouts counts as votes as well). For example, it is
suboptimal to issue a GLOBAL-ABORT if it had received VOTE-COMMITs from every node
before crashing.

Phase 1 :

Computer Science 162, Fall 2014 Midterm 3 - Page 15 of 26 December 15, 2014

1. At Coordinator :
a. _______________________________

b. SEND {PUT (k1, v1)} x N slaves

2. At slave :

a. _______________________________

b. _______________________________

c. _______________________________

d. _______________________________

Phase 2 :
3. At Coordinator :

for each slave {
i. RECEIVE {VOTE-COMMIT} or RECEIVE {VOTE-ABORT/TIMEOUT}

ii. _______________________________
}
if ([Case 1] received less than N VOTE-COMMITs or at least 1 VOTE-ABORT) {

i. _______________________________
for each slave {

do
ii. _______________________________

while (not RECEIVE{ACK})

iii._______________________________
}

} else if ([Case 2] ___) {

i. _______________________________
for each slave {

do
ii. _______________________________

while (not RECEIVE{ACK})

iii._______________________________
}

}

4. At slave :

a. _______________________________

b. _______________________________
c. SEND {ACK}

Computer Science 162, Fall 2014 Midterm 3 - Page 16 of 26 December 15, 2014

Post Phase 2: Finish and Return

5. At Coordinator:
a. _______________________________

b. SEND {SUCCESS/ERROR} to CLIENT

Solution:
Marking scheme :
Students MUST log the votes received from the slaves, since the constraints of the problem
state that the master cannot behave arbitrarily in the event of a crash. This way the master
knows exactly what the phase 2 action will be simply by observing its votes in the log. It is
OK if people logged an ACK or a GLOBAL action AFTER the slave has responded as a way
to not repeat an action on that slave if it completed prior to the master crashing.
Phase 1 :

1. At Coordinator :
a. LOG {PUT (k1, v1)}
b. SEND {PUT (k1, v1)} x N slaves

2. At slave :
a. REC {PUT (k1, v1)}
b. LOG {PUT (k1, v1)}
c. Log{VOTE-COMMIT} is OPTIONAL
d. SEND {VOTE-COMMIT} or SEND{VOTE-ABORT}

Phase 2 :
3. At Coordinator :

for slave in N-SLAVES:

i. RECEIVE {VOTE-COMMIT} or RECEIVE {VOTE-ABORT/TIMEOUT}
ii. LOG {VOTE-COMMIT or VOTE-ABORT} **MUST DO THIS OR MASTER COULD SEND GLOBAL ABORT EVEN IF ALL SLAVES VOTE TO COMMIT**

a. Case 1 : Received less than N VOTE-COMMITs or >= 1 VOTE-ABORT

i. --EXTRANEOUS-- LOG{GLOBAL-ABORT}

for each slave,
do
ii SEND {GLOBAL-ABORT}
while (not RECEIVE(ACK))

iii --OPTIONAL-- LOG {GLOBAL-ABORT / ACK} for slave

Computer Science 162, Fall 2014 Midterm 3 - Page 17 of 26 December 15, 2014

b. Case 2 : (recv VOTE_COMMIT from all slaves)

i. --EXTRANEOUS-- LOG {GLOBAL-COMMIT}

for each slave,
do
ii SEND {GLOBAL-COMMIT}
while (not RECEIVE (ACK))
iii --OPTIONAL-- LOG {GLOBAL-COMMIT / ACK}

4. At slave :
a. RECEIVE {GLOBAL COMMIT or GLOBAL ABORT}
b. LOG {GLOBAL COMMIT or GLOBAL ABORT}
c. SEND {ACK}

5. At coordinator :

a. LOG {SUCCESS/ERROR}
b. SEND {SUCCESS/ERROR} to CLIENT

(b) (6 points) What happens in the following possible scenarios (Keep your answers to three lines or
less) ? Steps refer to numbered lines in your solution above.
i. (2 points) The coordinator crashes at the end of step 1, before it has received any votes,

and wakes up after one timeout. Describe the sequence of actions required to recover the
coordinator until it gets through step 3.

Solution:
Upon rebuild, the coordinator sees PUT (k1, v1) in its log. It will wait for one timeout
period to gather responses to that VOTE-REQ. Depending on how many vote commits
it receives, it may proceed to issue a GLOBAL-COMMIT OR GLOBAL-ABORT. (must
allow for both cases for this to be right) WRONG if student arbitrarily makes a decision
since you cannot possibly what your votes are. The constraint of the problem state the
master must obey slave votes if available.

ii. (2 points) The coordinator crashes somewhere in step 3 after receiving all votes. List actions
required to rebuild the coordinator and complete step 3 in each case.

Solution:
Votes may not have been logged, so count logged votes. Wait for remaining votes for one
timeout cycle. Issue GLOBAL decision to all slaves until acked. WRONG if automatically
issue GLOBAL abort, or assume all votes are counted (since they may not be logged).

Computer Science 162, Fall 2014 Midterm 3 - Page 18 of 26 December 15, 2014

OR
POSSIBLE answer: if they logged acks/COMMIT/ABORT after the slave responds with
an ack, no need to wait for votes. only issue GLOBAL decision to unacked replicas.
DEDUCT if they wait for votes anyways and resend to all replicas since its inefficient and
indicates they dont understand why they logged this.

iii. (2 points) What happens to the master if it crashes at the VERY BEGINNING of step 5
before any actions 5a or 5b occur?

Solution: Solution
The master doesn’t remember that it received an ACK from the slave because it has
not yet acked that the transaction is a success. It loops to the top of step 3, counts N
VOTE-COMMITS, and attempts to perform a GLOBAL-COMMIT again. Slaves should
be idempotent to this.
OR
The master remembers that it received ACKs from the slaves. Checks if it received all the
ACKS, resend for slaves that did not ACK.
Important point : students’ answer should be one of the two alternatives depending on
whether they logged the ACKs or not.

(c) (6 points) Suppose in phase 2, when a coordinator is down, a slave can contact other slaves to
determine the coordinator’s GLOBAL-ABORT/COMMIT decision. 1) Following is a list of
scenarios that a slave can learn about the other slaves. What should the former do in the following
cases ?
i. (2 points) If at least one other slave has received a GLOBAL-COMMIT/GLOBAL-ABORT

message ?

Solution: Solution
commit / abort according to what that slave has heard.

ii. (2 points) If no other slaves have received a global Phase 2 decision but at least one slave
performed a VOTE_ABORT .

Solution: Abort. Note that this requires logging your vote, which you did not need to
do in your project.

1The slaves may do this to speed quickly finish this transaction and elect a new coordinator for the next transaction

Computer Science 162, Fall 2014 Midterm 3 - Page 19 of 26 December 15, 2014

iii. (2 points) If all participants have made a VOTE_COMMIT but no one has heard back from
the Coordinator ?

Solution: Block. Don’t know what the coordinator’s decision is because it’s not guaran-
teed that the coordinator received all votes.

(d) (1 point) With regards to time it takes to atomically complete one distributed transaction and
your answers to the previous subparts, what do you think is the most major drawback of the
two-phase protocol ?

Solution: This is a blocking protocol. As long as the coordinator is down, the protocol makes
no progress.

(e) (6 points) Suppose, we see that the KV-store has many more client PUT requests than GET
requests. In order to shorten the time taken for a client PUT request, we make the coordinator
respond back to the client after only one slave returns ACK in phase 2 of the two-phase commit.
Our objective is to implement GET without modifying the KV-store consistency guarantees.
i. (3 points) What extra information do you need to associate with each (key, value) pair ?

Solution:
Add a version number / timestamp.

ii. (3 points) Describe in one line or less, how you would implement a GET(key) request.

Solution: GET from all the slaves. return the value with the highest version number /
timestamp.

Computer Science 162, Fall 2014 Midterm 3 - Page 20 of 26 December 15, 2014

4. (25 points) mmap and virtual address space

Consider a two-level memory management scheme on 24-bit virtual addresses using the following address
formats in a big-endian system (i.e. the most significant byte is the first byte in memory):

Virtual Addresses

VPN1 (8 bits) VPN2 (8 bits) Offset (8 bits)

Physical Addresses

PPN (8 bits) Offset (8 bits)

Page table entries are 16 bits stored in big-endian form:

Page Table Entry

Physical Page Number (8 bits) Unused (7 bits) Valid (1 bit)

The base page-table pointer is 0x2000.

The following lines of code are run in a program, followed by several operations in process(data);
that are not shown.
...
int16_t *buf;
int16_t val;
int fd = open("cs162.txt", O_RDWR);
char *data = mmap(0x050000, 2048, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
process(data);
...

Given the contents of physical memory in the diagram below, write down the values of the variables
described. If the value cannot be determined, write the physical address that page faults. Assume all
operations affect subsequent parts of this question.

Computer Science 162, Fall 2014 Midterm 3 - Page 21 of 26 December 15, 2014

A
d
d
re
ss

+0
+1

+2
+3

+4
+5

+6
+7

+8
+9

+A
+
B

+
C

+
D

+
E

+
F

0
x0
0
0
0

E0
F0

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

A
1

B
1

C
1

D
1

0
x0
0
1
0

1
E

1
F

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
A

2
B

2
C

2
D

… 0
x1
0
1
0

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

4
A

4
B

4
C

4
D

4
E

4
F

0
x1
0
2
0

4
0

0
7

4
1

0
6

3
0

0
6

3
1

0
7

0
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

… 0
x2
0
0
0

2
1

FE
2
2

FF
2
5

FF
2
2

FF
2
F

ff
2
5

FF
3
0

FF
2
2

FF

0
x2
0
1
0

4
0

8
1

2
1

FF
2
5

8
0

4
3

8
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

… 0
x2
5
0
0

1
0

0
0

0
0

0
1

2
F

0
2

2
F

0
3

2
8

0
5

1
0

0
6

1
0

0
7

3
0

FF

0
x2
5
1
0

1
8

8
5

1
9

8
5

1
A

8
5

1
8

8
5

1
C

8
5

1
D

8
5

1
E

8
5

0
0

0
0

… 0
x2
8
0
0

5
0

0
1

5
1

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

… 0
x2
F0
0

6
0

0
3

2
8

0
3

2
2

0
3

6
3

0
0

6
4

0
3

6
5

0
0

6
6

0
0

6
7

0
0

0
x2
F1
0

6
8

0
0

6
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
x2
F2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

… 0
x3
0
0
0

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

A
A

B
B

C
C

D
D

EE
FF

0
x3
0
1
0

0
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
A

A
B

B
C

C
D

D
E

EF
0
0

Computer Science 162, Fall 2014 Midterm 3 - Page 22 of 26 December 15, 2014

(a) (2 points) What is the size of a page?

256 Bytes

(b) (3 points)
buf = (int16_t *) data;
What is the value of buf in hexadecimal? Write the faulting address if the value of buf cannot be
determined followed by the reason why.

value of buf is 0x050000

(c) (4 points)
val = * (data + 0x116);
What is the value of val in hexadecimal? Write the faulting address if the value of val cannot be
determined and explain what happens to service the fault.

value of val is 0x2425 (Address 0x0016)

(d) (4 points)
val = * data;
What is the value of val in hexadecimal? Write the faulting address if the value of val cannot be
determined and explain what happens to service the fault. Indicate by circling them any page
table entries that are to be changed.

page fault determined by accessing the PTE at 0x2500. A frame is allocated in memory and
a page from the file is read into it, then that page table entry is updated.

(e) (4 points)
buf = (int16_t *) (data + 0x116);
// SEEK_SET means the offset is relative to the beginning of the file
lseek(fd, 0x311, SEEK_SET);
read(fd, buf, 2);
What is the value of buf[0] in hexadecimal? Write the faulting address if the value of val cannot
be determined and explain what happens to service the fault. Indicate by circling them any page
table entries that are to be changed. Update the contents of physical memory after the operations
have executed. Cross out the replaced values in the diagram and update them with data.

value of buf[0] is 0x0069 (read from Address 0x2F11 and overwriting the value 0x2425 at
Address 0x0016)

(f) (3 points)
lseek(fd, 0x211, SEEK_SET);
write(fd, data+0x211, 2);
What happens when this is executed?

page fault (PTE at 0x2F00) writing a value onto itself.

(g) (3 points) Update the contents of physical memory after the following operations have executed.
Cross out the replaced values in the diagram and update them with new data.

int16_t new_data = 0x1234;
lseek(fd, 0x316, SEEK_SET);
write(fd, &new_data, 2);

Computer Science 162, Fall 2014 Midterm 3 - Page 23 of 26 December 15, 2014

Change value at 0x2F16 to 0x12, change value at 0x2F17 to 0x34.

(h) (2 points) If two processes mapped this file, how would the sharing be represented in the page
tables for each of their virtual address spaces.

The second level page tables of each would point to the same frames in physical memory.

Computer Science 162, Fall 2014 Midterm 3 - Page 24 of 26 December 15, 2014

5. (0 points) Participation

Please enter the name of the TA you interact with the most, they will be grading your course partici-
pation which is worth 5% of your course grade.

Computer Science 162, Fall 2014 Midterm 3 - Page 25 of 26 December 15, 2014

Computer Science 162, Fall 2014 Midterm 3 - Page 26 of 26 December 15, 2014

/******************************** Sockets ******************************/
int socket(int domain, int type, int protocol);
int connect(int socket, const struct sockaddr *address, socklen_t address_len);
struct hostent *gethostbyname(const char *name);
int bind(int socket, const struct sockaddr *address, socklen_t address_len);
int listen(int socket, int backlog);
int accept(int socket, struct sockaddr *address, socklen_t *address_len);

/****************************** Strings & Processes ******************************/
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

/******************************** Files ******************************/
int open(const char *pathname, int flags);
off_t lseek(int fildes, off_t offset, int whence);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

