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1 Warmup

1.1 Hello World

Will this code compile/run?
Why or why not?

pthread_mutex_t lock;
pthread_cond_t cv;
int hello = O;

void print_hello() {
hello += 1;
printf("First line (hello=%d)\n", hello);
pthread_cond_signal (&cv);
pthread_exit (0);

}

void main() {
pthread_t thread;
pthread_create(&thread, NULL, (void *) &print_hello, NULL);
while (hello < 1) {
pthread_cond_wait(&cv, &lock);
}
printf ("Second line (hello=%d)\n", hello);

This won’t work because the main thread should have locked the lock before calling pthread_cond_wait,
and the child thread should have locked the lock before calling pthread_cond_signal. (Also, we never
initialized the lock and cv.)

2  Vocabulary

e Condition Variable - A synchronization variable that provides serialization (ensuring that events
occur in a certain order). A condition variable is associated with:
— alock (a condition variable + its lock are known together as a monitor)
— some boolean condition (e.g. hello < 1)
— a queue of threads waiting for the condition to be true

In order to access any CV functions OR to change the truthfulness of the condition, a thread
must/should hold the lock. Condition variables offer the following methods:

— cv_wait(cv, lock) - Atomically unlocks the lock, adds the current thread to cv’s thread
queue, and puts this thread to sleep.
— cv_notify(cv) - Removes one thread from cv’s queue, and puts it in the ready state.

— cv_broadcast(cv) - Removes all threads from cv’s queue, and puts them all in the ready
state.
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When a wait()ing thread is notified and put back in the ready state, it also re-acquires the lock
before the wait() function returns.

When a thread runs code that may potentially make the condition true, it should acquire the lock,
modify the condition however it needs to, call notify() or broadcast() on the condition’s CV, so
waiting threads can be notified, and finally release the lock.

Why do we need a lock anyway? Well, consider a race condition where thread 1 evaluates the
condition C as false, then thread 2 makes condition C true and calls cv.notify, then 1 calls
cv.wait and goes to sleep. Thread 1 might never wake up, since it went to sleep too late.

Hoare Semantics - (In terms of condition variable) Wake a blocked thread when the condition is
true and transfer control of the CPU and ownership of the lock to that thread immediately. This
is difficult to implement in practice and generally not used despite being conceptually easier to
deal with.

Mesa Semantics - (In terms of condition variable) Wake a blocked thread when the condition is
true, with no guarantee that the thread will execute immediately. The newly woken thread simply
gets put on the ready queue and is subject to the same scheduling mechanisms as any other thread.
The implication of this is that you must check the condition with a while loop instead of
an if statement because it is possible for the condition to change to false between the
time the thread was unblocked and the time it takes over the CPU.

Spin Locks - A type of lock where the implementation of lock.acquire() is to simply check if
the lock is available in a loop (”spin”). Since the thread remains active but is not performing a
useful task, the use of such a lock is a kind of busy waiting.

3 Problems

3.1 Hello Word Continued

Add in the necessary code to the warmup to make it work correctly.

Acquire a lock before the cv is used and release it afterwards.

void print_hello() {

}

void main() {

pthread_mutex_lock(&lock) ;

hello += 1;

printf ("First line (hello=%d)\n", hello);
pthread_cond_signal (&cv) ;
pthread_mutex_unlock(&lock) ;
pthread_exit(0);

pthread_t thread;
pthread_mutex_init(&lock, 0);
pthread_cond_init(&cv, 0);

pthread_create(&thread, NULL, (void *) &print_hello, NULL);
pthread_mutex_lock(&lock) ;

while (hello < 1) {
pthread_cond_wait (&cv, &lock);
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}
pthread_mutex_unlock(&lock) ;

printf ("Second line (hello=%d)\n", hello);

3.2 Spot the Problem
What is wrong with this code?

pthread_mutex_t lock;
pthread_cond_t cv;
int n = 3;
void counter() {
pthread_mutex_lock(&lock);
for (n =3; n> 0; n--)
printf ("%d\n", n);
pthread_cond_signal (&cv);
pthread_mutex_unlock(&lock) ;
}
void announcer() {
while (n != 0) {
pthread_mutex_lock(&lock) ;
pthread_cond_wait(&cv, &lock);
pthread_mutex_unlock(&lock) ;
}
printf ("BLAST OFF!\n");
}

The lock in announcer() should be outside of the while loop. Or else, the announcer thread might
never wake up.

3.3 Baking with Condition Variables

A number of people are trying to bake cakes. Unfortunately, they each know only one skill, so they
need to all work together to bake cakes. Use independent threads (one person is one thread) which
communicate through condition variables to solve the problem. A skeleton has been provided, fill in the
blanks to make the implementation work.

A cake requires:
e 1 cake batter
o 2 eggs
Instructions:
1. Add ingredients to bowl
2. Heat bowl (it’s oven-safe)

3. Eat the cake, clean out the bowl, and go back to step 1
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Requirements:

e Don’t start heating the cake in the oven unless there are exactly the right number of ingredients
in the bowl.

e Don’t add raw ingredients to a currently-baking cake or a finished cake.
e Don’t eat the cake unless it’s done baking.

e Given enough time, the code should bake an unbounded number of cakes, and should never stop.

int numBatterInBowl = 0;

int numEggInBowl = O;

bool readyToEat = false;
pthread_mutex_t lock;
pthread_cond_t needIngredients;
pthread_cond_t readyToBake;
pthread_cond_t startEating;

void batterAdder ()
{

pthread_mutex_lock(&lock);
while (1) {

void eggBreaker()

{
pthread_mutex_lock(&lock);

while (1) {

void bowlHeater ()

{
pthread_mutex_lock(&lock) ;

while (1) {
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}
}
void cakeEater()
{
pthread_mutex_lock(&lock) ;
while (1) {
______________________________________________ {
}
eatCake(); // Sets readyToEat = false and cleans the bowl for another cake
}
}

int main(int argc,char *argv[])
{
// Initialize mutex and condition variables
// Start threads: 1 batterAdder, 2 eggBreakers, 1 bowlHeater, and 1 cakeEater

// main() sleeps forever

int numBatterInBowl = 0;

int numEggInBowl = O;

bool readyToEat = false;
pthread_mutex_t lock;
pthread_cond_t needIngredients;
pthread_cond_t readyToBake;
pthread_cond_t startEating;

void batterAdder()
{
pthread_mutex_lock(&lock) ;
while (1) {
while (numBatterInBowl && !readyToEat) {
pthread_cond_wait(&needIngredients, &lock);
}
addBatter(); // Sets numBatterInBowl += 1
pthread_cond_signal (&readyToBake) ;
}
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}

void eggBreaker ()
{
pthread_mutex_lock(&lock) ;
while (1) {
while (numEggInBowl >= 2 && !readyToEat) {
pthread_cond_wait (&needIngredients, &lock);
}
addEgg(); // Sets numEggInBowl += 1
pthread_cond_signal (&readyToBake) ;
}
}

void bowlHeater ()
{
pthread_mutex_lock(&lock) ;
while (1) {
while (numBatterInBowl != 1 || numEggInBowl != 2) {
pthread_cond_wait (&readyToBake, &lock);
}
heatBowl(); // Sets readyToEat = true, numBatterInBowl = O, numEggInBowl = 0
pthread_cond_signal (&startEating);
}
}

void cakeEater()
{
pthread_mutex_lock(&lock) ;
while (1) {
while (!readyToEat) {
pthread_cond_wait (&startEating, &lock);
}
eatCake(); // Sets readyToEat = false and cleans the bowl for another cake
pthread_cond_broadcast (&needIngredients) ;

}
}

int main(int argc,char *argv([])

{
// Initialize mutex and condition variables
// Start threads: 1 batterAdder, 2 eggBreakers, 1 bowlHeater, and 1 cakeEater
// main() sleeps forever

}

3.4 test_and_set

Assume that I use test_and_set to emulate the behavior of locks.

int value = O;
int hello 0;
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void print_hello() {
while (test_and_set(value));
hello += 1;
printf("Child thread: %d\n", hello);
value = O;
pthread_exit(0);
}

void main() {
pthread_t threadl;
pthread_t thread2;
pthread_create(&threadl, NULL, (void *) &print_hello, NULL);
pthread_create(&thread2, NULL, (void *) &print_hello, NULL);
while (test_and_set(value));
printf ("Parent thread: %d\n", hello);
value = O;

3

Assume the following sequence of events:

. Main starts running and creates both threads and is then context switched right after
. Thread?2 is scheduled and run until after it increments hello and is context switched

. Threadl runs until it is context switched

. The thread running main resumes and runs until it get context switched

. Thread2 runs to completion

. The thread running main runs to completion (but doesn’t exit yet)

. Threadl runs to completion

N OO W N

Is this sequence of events possible? Why or why not?

Yes. In steps 3 and 4, the main thread and threadl make no progress. They can only run to
completion after thread2 resets the value to 0.

And each step, if test_and_set is called, what value(s) will it return?

1. No call to test_and_set
2.0

3.1, 1, ...,1
4. 1,1, ..., 1
5. No call to test_and_set
6. 0
7.0

Given this sequence of events, what will C print?

Child thread: 1
Parent thread: 1
Child thread: 2

Is this a good way to implement locks? Why or why not?
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No, this involves a ton of busy waiting.

3.5 test_and_test_and_set?

To lower the overhead a more elaborate locking protocol test and test-and-set can be used. The main
idea is not to spin in test-and-set but increase the likelihood of successful test-and-set by spinning until
the lock seems like it is free.

Fill in the rest of the implementation for a test_and_test_and_set based lock:

int locked = O0;
void lock() {

_______________________ // Spin until lock looks empty
while (test_and_set(locked));
}

void unlock() {

Is this a better implementation of a lock that just using test_and_set? Why or why not?

void lock() {
while (locked == 1);
while (test_and_set(locked));

}

void unlock() {
locked = 0;

}

Yes. This scheme uses normal memory reads to spin while waiting for the lock to become free.
Test_and_set is only used to try to get the lock when normal memory reads say it is free. Thus,
expensive atomic memory operations happen less often.

Given the following implementations of lock and unlock, what are all the possible outputs that C
might print out? Assume the pid for the main thread is 1 and the pid for created thread is 2. Also
assume the print statements here are atomic.

int locked = 0;

void lock(pid_t pid) {
while (locked == 1);
printf ("%s\n", "The lock is free!");
while (test_and_set(locked));
printf ("Lock acquired by: %d\n", pid);
}

void unlock(pid_t pid) {
locked = O;
printf ("Lock released by: %d\n", pid);
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}

void do_nothing(void* arg) {
pid_t pid = getpid();
lock(pid);
unlock(pid);
pthread_exit(0);

}

void main() {
pthread_t thread;
pthread_create(&thread, NULL, (void *) &do_nothing, NULL);
do_nothing();

The lock is free!
The lock is free!
Lock acquired by:
Lock released by:
Lock acquired by:
Lock released by:

NN = =

or

The lock is free!
Lock acquired by: 1
Lock released by: 1
The lock is free!

Lock acquired by: 2
Lock released by:

N

or

The lock is free!
Lock acquired by: 1
The lock is free!

Lock released by: 1
Lock acquired by: 2
Lock released by:

N

. And many more
This aren’t possible:

The lock is free!
Lock acquired by: 2
The lock is free!

Lock acquired by: 1
Lock released by: 1
Lock released by:

N

. And many more

10
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