
Section 6: Scheduling and Fairness

Vaishaal Shankar

February 26, 2015

Contents

1 Warmup 2

2 Vocabulary 2

3 Problems 3
3.1 Simple Priority Scheduler . 3

3.1.1 Fairness . 3
3.1.2 Better than Priority Scheduler? . 4
3.1.3 Tradeoff . 4

3.2 Totally Fair Scheduler . 4
3.2.1 Per thread quanta . 5
3.2.2 struct thread . 5
3.2.3 thread tick . 6
3.2.4 timer interrupt . 6
3.2.5 thread create . 7
3.2.6 Analysis . 8

1

CS 162 Spring 2015 Section 6: Scheduling and Fairness

1 Warmup

Which of the following are true about Round Robin Scheduling?

1. The average wait time is less that that of FCFS for the same workload.

2. Is supported by thread_tick in Pintos.

3. It requires pre-emption to maintain uniform quanta.

4. If quanta is constantly updated to become the # of cpu ticks since boot, Round Robin becomes
FIFO.

5. If all threads in the system have the same priority, Priority Schedulers must behave like round
robin.

6. Cache performance is likely to improve relative to FCFS.

7. If no new threads are entering the system all threads will get a chance to run in the cpu every
QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds. (Assuming QUANTA is in ticks).

8. This is the default scheduler in Pintos

9. It is the fairest scheduler

2 Vocabulary

• Scheduler - The process scheduler is a part of the operating system that decides which process
runs at a certain point in time. It usually has the ability to pause a running process, move it to
the back of the running queue and start a new process;

2

CS 162 Spring 2015 Section 6: Scheduling and Fairness

3 Problems

3.1 Simple Priority Scheduler

We are going to implement a new scheduler in Pintos we will call it SPS. We will just split threads into
two priorities ”high” and ”low”. High priority threads should always be scheduled before low priority
threads. Turns out we can do this without expensive list operations.

For this question make the following assumptions:

• Priority Scheduling is NOT implemented

• High priority threads will have priority 1

• Low priority threads will have priority 0

• The priorities are set correctly and will never be less than 0 or greater than 1

• The priority of the thread can be accessed in the field int priority in struct thread

• The scheduler treats the ready queue like a FIFO queue

• Dont worry about pre-emption.

Modify thread_unblock so SPS works correctly.
You are not allowed to use any non constant time list operations

void

thread_unblock (struct thread *t)

{

enum intr_level old_level;

ASSERT (is_thread (t));

old_level = intr_disable ();

ASSERT (t->status == THREAD_BLOCKED);

list_push_back (&ready_list, &t->elem);

__

t->status = THREAD_READY;

intr_set_level (old_level);

}

3.1.1 Fairness

In order for this scheduler to be ”fair” briefly describe when you would make a thread high priority and
when you would make a thread low priority.

3

CS 162 Spring 2015 Section 6: Scheduling and Fairness

3.1.2 Better than Priority Scheduler?

If we let the user set the priorities of this scheduler with set_priority, why might this scheduler be
preferable to the normal pintos priority scheduler?

3.1.3 Tradeoff

How can we trade off between the coarse granularity of SPS and the super fine granularity of normal
priority scheduling? (Assuming we still want this fast insert)

3.2 Totally Fair Scheduler

You design a new scheduler, you call it TFS. The idea is relatively simple, in the begining, we have
three values BIG_QUANTA, MIN_LATENCY and MIN_QUANTA. We want to try and schedule all threads every
MIN_LATENCY ticks, so they can get atleast a little work done, but we also want to make sure they run
atleast MIN_QUANTA ticks. In addition to this we want to account for priorities. We want a threads
priority to be inversely proportial to its vruntime or the amount of ticks its spent in the CPU in the
last BIG_QUANTA ticks.

You may make the following assumptions in this problem:

• Priority scheduling in Pintos is functioning properly,

• Priority donation is not implemented.

• Alarm is not implemented.

4

CS 162 Spring 2015 Section 6: Scheduling and Fairness

• thread_set_priority is never called by the thread

• You may ignore the limited set of priorities enforced by pintos (priority values may span any float

value)

• For simplicity assume floating point operations work in the kernel

3.2.1 Per thread quanta

How long will a particular thread run? (use the threads priority value)

3.2.2 struct thread

Below is the declaration of struct thread. What field(s) would we need to add to make TFS possible?
You may not need all the blanks.

struct thread

{

/* Owned by thread.c. */

tid_t tid; /* Thread identifier. */

enum thread_status status; /* Thread state. */

char name[16]; /* Name (for debugging purposes). */

uint8_t *stack; /* Saved stack pointer. */

float priority; /* Priority, as a float. */

struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */

struct list_elem elem; /* List element. */

#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir; /* Page directory. */

#endif

___________________________ /* What goes here? */

___________________________ /* What goes here? */

___________________________ /* What goes here? */

/* Owned by thread.c. */

unsigned magic; /* Detects stack overflow. */

};

5

CS 162 Spring 2015 Section 6: Scheduling and Fairness

3.2.3 thread tick

What is needed for thread_tick() for TFS to work properly? You may not need all the blanks.

void

thread_tick (void)

{

struct thread *t = thread_current ();

/* Update statistics. */

if (t == idle_thread)

idle_ticks++;

#ifdef USERPROG

else if (t->pagedir != NULL)

user_ticks++;

#endif

else

kernel_ticks++;

__;

__;

/* Enforce preemption. */

if (++thread_ticks >= TIME_SLICE) { /* TIME_SLICE may need to be replaced with something else */

intr_yield_on_return ();

_________________________________;

_________________________________;

_________________________________;

_________________________________;

_________________________________;

_________________________________;

_________________________________;

}

}

3.2.4 timer interrupt

What is needed for timer_interrupt for TFS to function properly.

static void

timer_interrupt (struct intr_frame *args UNUSED)

{

ticks++;

_____________________________________;

_____________________________________;

6

CS 162 Spring 2015 Section 6: Scheduling and Fairness

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

_____________________________________;

thread_tick ();

}

3.2.5 thread create

What is needed for thread_create() for TFS to work properly? You may not need all the blanks.

tid_t

thread_create (const char *name, int priority,

thread_func *function, void *aux)

{

/* Body of thread_create omitted for brevity */

__

__

__

__

__

__

__

__

__

7

CS 162 Spring 2015 Section 6: Scheduling and Fairness

__

__

__

__

__

__

__

/* Add to run queue. */

thread_unblock (t);

if (priority > thread_get_priority ())

thread_yield ();

return tid;

}

3.2.6 Analysis

Explain the high level behavior of this scheduler; what exactly is it trying to do? How is it differen-
t/similar from/to the multilevel feedback scheduler from the project?

8

	Warmup
	Vocabulary
	Problems
	Simple Priority Scheduler
	Fairness
	Better than Priority Scheduler?
	Tradeoff

	Totally Fair Scheduler
	Per thread quanta
	struct thread
	thread tick
	timer interrupt
	thread create
	Analysis

