Recall: Private Key Cryptography

- **Private Key (Symmetric) Encryption:**
 - Single key used for both encryption and decryption

- **Plaintext:** Unencrypted Version of message
- **Ciphertext:** Encrypted Version of message

- Important properties
 - Can't derive plain text from ciphertext (decode) without access to key
 - Can't derive key from plain text and ciphertext
 - As long as password stays secret, get both secrecy and authentication
- Symmetric Key Algorithms: DES, Triple-DES, AES

Recall: Public Key Encryption Details

- Idea: K_{public} can be made public, keep $K_{private}$ private

- Gives message privacy (restricted receiver):
 - Public keys (secure destination points) can be acquired by anyone/used by anyone
 - Only person with private key can decrypt message

- What about authentication?
 - Use combination of private and public key
 - Alice→Bob: $[(I'm Alice)_A^{private}\ Rest of message]_B^{public}$
 - Provides restricted sender and receiver

- But: how does Alice know that it was Bob who sent her B_{public}? And vice versa…
 - Need a certificate authority to sign keys!

Non-Repudiation: RSA Crypto & Signatures

- Suppose Alice has published public key K_E
- If she wishes to prove who she is, she can send a message x encrypted with her private key K_D (i.e., she sends $E(x, K_D)$)
 - Anyone knowing Alice’s public key K_E can recover x, verify that Alice must have sent the message
 - It provides a signature
 - Alice can’t deny it ⇒ non-repudiation

- Could simply encrypt a hash of the data to sign a document that you wanted to be in clear text
- Note that either of these signature techniques work perfectly well with any data (not just messages)
 - Could sign every datum in a database, for instance
RSA Crypto & Signatures (cont’d)

Digital Certificates

- How do you know K_E is Alice’s public key?

- Trusted authority (e.g., Verisign) signs binding between Alice and K_E with its private key $K_V_{private}$

 - $C = E((Alice, K_E), K_V_{private})$

 - C: digital certificate

- Alice: distribute her digital certificate, C

- Anyone: use trusted authority’s K_V_{public} to extract Alice’s public key from C

 - $D(C, K_V_{public}) = D(E((Alice, K_E), K_V_{private}), K_V_{public}) = \{Alice, K_E\}$

Summary of Our Crypto Toolkit

- If we can securely distribute a key, then

 - Symmetric ciphers (e.g., AES) offer fast, presumably strong confidentiality

- Public key cryptography does away with (potentially major) problem of secure key distribution

 - But: not as computationally efficient

 » Often addressed by using public key crypto to exchange a session key

- Digital signature binds the public key to an entity

Putting It All Together - HTTPS

- What happens when you click on https://www.amazon.com?

 - https = “Use HTTP over SSL/TLS”

 - SSL = Secure Socket Layer

 - TLS = Transport Layer Security

 » Successor to SSL

 - Provides security layer (authentication, encryption) on top of TCP

 » Fairly transparent to applications
HTTPS Connection (SSL/TLS) (cont’d)

- Browser (client) connects via TCP to Amazon’s HTTPS server
- Client sends over list of crypto protocols it supports
- Server picks protocols to use for this session
- Server sends over its certificate
- (all of this is in the clear)

Inside the Server’s Certificate

- Name associated with cert (e.g., Amazon)
- Amazon’s RSA public key
- A bunch of auxiliary info (physical address, type of cert, expiration time)
- Name of certificate’s signatory (who signed it)
- A public-key signature of a hash (SHA-256) of all this
 - Constructed using the signatory’s private RSA key, i.e.,
 - Cert = E(H_{SHA256}(KA_{public}, www.amazon.com, ...), KS_{private}))
 - KA_{public}: Amazon’s public key
 - KS_{private}: signatory (certificate authority) private key
 - ...

Validating Amazon’s Identity

- How does the browser authenticate certificate signatory?
 - Certificates of several certificate authorities (e.g., Verisign) are hardwired into the browser (or OS)
- If can’t find cert, warn user that site has not been verified
 - And may ask whether to continue
 - Note, can still proceed, just without authentication
- Browser uses public key in signatory’s cert to decrypt signature
 - Compares with its own SHA-256 hash of Amazon’s cert
- Assuming signature matches, now have high confidence it’s indeed Amazon … assuming signatory is trustworthy
 - DigiNotar CA breach (July-Sept 2011): Google, Yahoo!, Mozilla, Tor project, Wordpress, … (531 total certificates)

Certificate Validation

Certificate

Can also validate using peer approach: https://www.eff.org/observatory
HTTPS Connection (SSL/TLS) cont’d

- Browser constructs a random session key K used for data communication
 - Private key for bulk crypto
- Browser encrypts K using Amazon’s public key
- Browser sends $E(K, KA_{\text{public}})$ to server
- Browser displays
- All subsequent comm. encrypted w/ symmetric cipher (e.g., AES128) using key K
 - E.g., client can authenticate using a password

Security Summary

- Many more challenges to building secure systems and applications
- No fixed-point solutions
- Adversaries constantly change and adapt
- Defenses must also constantly change and adapt
- Take CS 161

Data Deluge

- Billions of users connected through the net
 - WWW, FB, twitter, cell phones, …
 - 80% of the data on FB was produced last year
 - FB building Exabyte ($2^{60} \approx 10^{18}$) data centers
- It’s all happening online – could record every:
 - Click, ad impression, billing event, server request, transaction, network msg, fault, fast forward, pause, skip, …
- User Generated Content (Web & Mobile)
 - Facebook, Instagram, Yelp, TripAdvisor, Twitter, YouTube, …

Administrivia

- Prof Joseph’s Tue office hours rescheduled to Wed Noon-1pm in 465F Soda
- Midterm #3 on Wednesday 11/30 5-6:30PM
 - 1 LeConte (Last name A-H) and 2050 VLSB (Last name I-Z)
 - Topics primarily course material from lectures 16 – 25
 - Lectures, projects, homeworks, readings, textbook
 - Closed book, no calculators, three double-side letter-sized page of handwritten notes
 - Review after class on today Monday 11/28 in 2050 VLSB
- Project #3 code due next Monday 12/2
Data Grows Faster than Moore’s Law

- Projected Growth

<table>
<thead>
<tr>
<th>Increase over 2010</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore’s Law</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Particle Accel.</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>DNA Sequencers</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

The Big Data Solution: Cloud Computing

- One machine can not process or even store all the data!

 - Solution: distribute data over cluster of cheap machines

 - Lots of hard drives
 - ... and CPUs
 - ... and memory!

Cloud Computing

- Apache Spark computing framework:
 - Programming abstraction and parallel runtime to hide complexities of fault-tolerance and slow machines
 - “Here’s an operation, run it on all of the data”
 - I don’t care where it runs (you schedule that)
 - In fact, feel free to run it twice on different nodes

What Can You do with Big Data?

- Crowdsourcing
- Physical modeling
- Sensing
- Data Assimilation

= http://traffic.berkeley.edu
Real World Spark and Cloud Computing Use Cases

• My research (today):
 – Secure Machine Learning
 – Big Data Genomics using ADAM

• Other use cases:
 – Conviva optimizing Internet video stream delivery
 – Data processing for wearables and Internet of Things
 – Personalized Yahoo! news pages
 – Analytics for Yahoo! advertising
 – Capital One product recommendations

Secure Machine Learning: Our View

• Security Analytics: Using Robust ML for adversary resistant security metrics and analytics
 – Pattern mining and prediction, at scale, on big data, with adversaries
 – Detecting and classifying malware, spam, and malicious sites/URLs
 – Identifying authors of User Generated Content and malware

• Situational Awareness: Helping the humans-in-the-loop
 – Real-time, Machine Learning-based analytics for humans
 – Domain experts
 – Crowds and human reviewers
 – End-users of systems

Adversarial Exploitation of ML

• Traditional approach – Evading Adversary
 – Attacker determines decision boundary
 – Crafts (positive instance) content that is classified as negative

• Input data “drifts” over time, so must periodically retrain ML
 – Use previously classified input data

• Newer approach – Influencing Adversary
 – Patient attacker operates during periodic retraining stage by injecting “tricky” positive instances
 – Shifts decision boundary over time during retraining such that (positive instance) content is eventually classified as negative

• Need novel adaptive, robust ML techniques to defend against Influencing Adversaries – already a threat for spam detection

An ML Analysis Pipeline: From Labs to Production

• Goal: research AND production environment
 – Moonshot: Detect undetectable Advanced Persistent Threats

• Significant challenges to deploying ML in practice:
 – Increased human insight – how the system is making decisions
 – Scalable, interactive analysis – large-scale data, human-driven exploration
 – Time series analysis – repeatable scientific experiments to build confidence in ML
 – Resource management – variable cost analyses and experts
 – Adversarial resilience – detecting attempts to manipulate or evade detection
Our Dataset

- Over 1 million unique executables from VirusTotal
 - Seen over 5 million times
 - Spanning January 2012 to June 2014
 - ~1% of VirusTotal’s executables for the period
- Labeled by 32 AV providers’ static engines
 - Threshold of four detections to label as malicious
- 85% malicious (3,000 to 406,000 families)
- The largest academic malware detection dataset

Secure Active Learning Testbed (SALT)

Detection Pipeline

- Samples
- Feature Extraction
- Current Model
- Prediction

Evaluation of Secure Active Learning Testbed (SALT)

More accurate than best x86 antivirus providers on VirusTotal

Process 2.5 year, 1.1 million executable dataset in hours

Some components in production at an AV provider

*Using AV providers static engines

Active Learning Results

Comparison of Classifier Accuracy to Vendor Labels

80 queries/day
0 queries/day

Active learning queries to oracle

Built on Apache Spark for scalability
Active Learning Results

Current Research: Features

Moonshot Results
2334 samples were undetected by all AV vendors
SALT with Active ML detected:
• 517 (22%) at 1% FPR
• 364 (16%) at 0.3% FPR

• Understanding feature importance
 – Most important features for detecting malware
 – Most important features for detecting benign

• Understanding important feature sensitivity
 – How brittle are important features?
 – Can features be manipulated to cause FN/FP errors?

• Some challenges:
 – How to change features without breaking malware?
 – How to make models robust?

Summary: Secure Machine Learning Goals

• Developing tools combining machine learning and analysis to automatically extract features and build models

• Improving users' experiences by translating the reasoning behind security decisions into human understandable concepts

• Designing robust algorithms for large-scale machine-learning in the presence of adversarial manipulation

SecML Acknowledgements

• UC Berkeley: David Fifield, Alex Kantchelian, Brad Miller, Qi Zhong, Vaishaal Shankar, Tony Wu, George Yu, Riyaz Faizullahb, Doug Tygar, Anthony D. Joseph

• Drexel: Eleanor Cawthon, Edwin Dauber, Rachel Greenstadt

• ICSI: Sadia Afroz, Michael Tshantz

• Intel: Ling Huang, Rekha Bachwani, Catherine Huang

• Mitsubishi: Takumi Yamamoto
Why Do We Need Big Genomic Data?

Precision Medicine!
- Understand genetic causes of diseases
- Choose more effective drugs and avoid adverse reactions

A Precision Medicine First
- Joshua Osborn (14 years old)
 - Visited ER 3 times in 4 months with encephalitis (brain swelling)
 - Hospitalized after 3rd visit and placed into a medically induced coma due to uncontrollable seizures

- Doctors tried traditional medicine approaches
 - Over 100 viral/fungal/bacterial pathogens cause encephalitis
 - Lots and lots of tests for different pathogens
 - 1 cm³ of brain tissue biopsied

- Last resort – sent spinal fluid to UCSF for DNA sequencing
 - Needle in a haystack – throw out human reads (99.984%)
 - 475 reads out of 3M from rare *Leptospira santarosai* bacteria → given antibiotics, out of coma in week, discharged 4 wks

June 4, 2014

- US: 15,000 cases a year of encephalitis with 2,000 deaths (>70% of deaths underdiagnosed)
- Worldwide: 70,000 diagnosed cases a year with 25,000 deaths

Looking for Genetic Causes of Schizophrenia

Only slight to moderate genetic diagnosis is usually in parents. Many say it could lead to more effective treatments for mental illness that can be used to identify, such as Cytoxan disease.

Diagnosis is a crucial step in treatment, but it can also be the most difficult. Doctors usually must pass the most likely causes of a medical problem and then individual tests to one which is the right diagnosis.

The testing game can take precious time. The cause of some conditions, like schizophrenia, can be so hard to diagnose that doctors often end up with no answer at all.

"About 60 percent of the time, we never make a diagnosis," in encephalitis, said Dr. Michael R. Weinshenker, a neurologist at the University of California, San Francisco, and an author of the new paper. "It is frustrating whenever someone is doing poorly, but it's especially frustrating when we can't even tell the patient what the hell is going on."

A non-significant

https://amplab.cs.berkeley.edu/snap-helps-save-a-life
Looking for Genetic Causes of Schizophrenia

2013: 50,000 samples

60 significant

2014: ~150,000 samples

128 significant

Wet Lab Sequencing Cost Dropping Exponentially

Source: NIH National Genome Research Institute

2014: ~230,000 genomes sequenced
15-250GB/genome = ~30TB/day
= ~10PB/year

Moore’s Law

Human Genome Project: ~10GB

1000 Genomes: 15TB

TCGA: 3PB

Moore's law is dead! (from a computing perspective)

Time to Break from Legacy Compute!

• Large cohorts generate massive amounts of data
 – 100+ GB of sequence data per sample
 – 1+ GB of variant data per sample

• Historically, we have processed genomic data on HPC
 – High Performance Computing relies on fast, expensive machines with centralized storage → expensive to scale data volume

• US Veterans Administration’s Million Veterans Project (210 PB)
 » Enrolled 500,000th veteran in August 2016

• UK 100K Genome Project (21 PB)
 » One goal is to analyze rare diseases (<1 in 2,000 people)
Our Approach

- Bring together cross cutting researchers
 - We have CS, Bio, HPC backgrounds
- Leverage fact that most genomic analysis steps are parallel
- Rethink design of genomics tools for cloud/commodity computing
 - Easy to write and use horizontally scalable genomics algorithms
- Apply Open Source Software ethos
 - We build tools that people freely use and build upon
- Bring emphasis on collaboration:
 - Work closely with UCSC CGL, MSR, OHSU, Stanford, Mt. Sinai

ADAM: A Stack-based Design

A Well Designed Stack Simplifies Application Design

First, Define a Schema

```
record AlignmentRecord {
  union { null, Contig } contig = null;
  union { null, long } start = null;
  union { null, long } end = null;
  union { null, Int } mapq = null;
  union { null, string } readName = null;
  union { null, string } sequence = null;
  union { null, string } mateReference = null;
  union { null, long } mateAlignmentStart = null;
  union { null, string } cigar = null;
  union { null, string } qual = null;
  union { null, string } recordGroupName = null;
  union { int, null } basesTrimmedFromStart = 0;
  union { int, null } basesTrimmedFromEnd = 0;
  union { boolean, null } readPaired = false;
  union { boolean, null } properPair = false;
  union { boolean, null } readMapped = false;
  union { boolean, null } mateMapped = false;
  union { boolean, null } firstOfPair = false;
  union { boolean, null } secondOfPair = false;
  union { boolean, null } failedVendorQualityChecks = false;
  union { boolean, null } duplicateRead = false;
  union { boolean, null } readNegativeStrand = false;
  union { boolean, null } mateNegativeStrand = false;
  union { boolean, null } primaryAlignment = false;
  union { boolean, null } secondaryAlignment = false;
  union { boolean, null } supplementaryAlignment = false;
  union { string, null } mismatchingPositions = null;
  union { string, null } origQual = null;
  union { string, null } attributes = null;
  union { string, null } recordGroupSequencingCenter = null;
  union { string, null } recordGroupDescription = null;
  union { long, null } recordGroupRunDateEpoch = null;
  union { string, null } recordGroupFlowOrder = null;
  union { string, null } recordGroupKeySequence = null;
  union { string, null } recordGroupLibrary = null;
  union { int, null } recordGroupPredictedMedianInsertSize = null;
  union { string, null } recordGroupPlatform = null;
  union { string, null } recordGroupPlatformUnit = null;
  union { string, null } recordGroupSample = null;
  union { null, Contig } mateContig = null;
}
```
Query Genomic Data via Schema

```
record AlignmentRecord {
  union { null, Contig } contig = null;
  union { null, long } start = null;
  union { null, long } end = null;
  union { null, int } qual = null;
  union { null, string } readName = null;
  union { null, string } sequence = null;
  union { null, string } mateReference = null;
  union { null, long } mateAlignmentStart = null;
  union { null, string } cigar = null;
  union { null, string } qual = null;
  union { null, string } recordGroupName = null;
  union { int, null } basesTrimmedFromStart = 0;
  union { int, null } basesTrimmedFromEnd = 0;
  union { boolean, null } readPaired = false;
  union { boolean, null } properPair = false;
  union { boolean, null } readMapped = false;
  union { boolean, null } mateMapped = false;
  union { boolean, null } firstOfPair = false;
  union { boolean, null } secondOfPair = false;
  union { boolean, null } failedVendorQualityChecks = false;
  union { boolean, null } duplicateRead = false;
  union { boolean, null } readNegativeStrand = false;
  union { boolean, null } mateNegativeStrand = false;
  union { boolean, null } primaryAlignment = false;
  union { boolean, null } secondaryAlignment = false;
  union { boolean, null } supplementaryAlignment = false;
  union { null, string } mismatchingPositions = null;
  union { null, string } origQual = null;
  union { null, string } attributes = null;
  union { null, string } recordGroupSequencingCenter = null;
  union { null, string } recordGroupDescription = null;
  union { null, long } recordGroupRunDateEpoch = null;
  union { null, string } recordGroupFlowOrder = null;
  union { null, string } recordGroupKeySequence = null;
  union { null, string } recordGroupLibrary = null;
  union { null, int } recordGroupPredictedMedianInsertSize = null;
  union { null, string } recordGroupPlatform = null;
  union { null, string } recordGroupPlatformUnit = null;
  union { null, string } recordGroupSample = null;
  union { null, Contig } mateContig = null;
}
```

Parallelize Common Access Patterns

- We provide parallel methods for processing genomic data with Spark
- Makes use of genomics specific reference genome structure to accelerate queries
- E.g., region join for high performance overlap queries

Pick Appropriate Storage

- When accessing scientific datasets, we frequently slice and dice the dataset:
 - Algorithms may touch subsets of columns
 - We don’t always touch the whole dataset
- This is a good match for columnar storage like Apache Parquet
- Also, can support legacy formats

Big Performance Gains!

ADAM-based pipeline is statistically identical to the (non-OSS) GATK, but 3.5x faster, 3x cheaper
Cloud-scale Batch Variant Analysis

- **Resequencing**: sequence a sample, and compute `diff` from “average” genome → variants
- **Projects**: Toil, ADAM, avocado
- **Algorithmic challenges**:
 - Empirical evaluation of preprocessing methods
 - Use of alt haplotypes/graph genomes in variant calling
 - Linear time genome reassembly algorithms
- **Infrastructure challenges**:
 - How do we run geo-distributed workflows efficiently?
 - Can bioinformatics be made reproducible?

Exploratory Data Analysis for Genomics

- **Projects**: mango
- **Currently, exploring genomic data means**:
 - `cat my.vcf | grep “chr1” | awk ‘...’ | sed ...
- **Viz tools can only explore short ranges**
- **Let us break down this wall! Long range viz with ad hoc queries**

Scalable ML for Genomics

- **Projects**: gnocchi, fig, ...
- **Genomic data is often statistically interesting** → need to train some higher level classifier
 - Genome-Wide Association Studies (GWAS)
 - Phenome-Wide Association Studies (PheWAS)
- **Spark is designed for ML at scale; how can we harness this for genomics?**
 - GWAS/PheWas/population genomics → Gnocchi
 - Non-coding variant annotation → fig

Want to Learn More?

- **Check out the code!**
 - ADAM: https://github.com/bigdatagenomics/adam
- **Check out a demo!**
 - https://databricks.com/blog/2016/05/24/genome-sequencing-in-a-nutshell.html
- **Run ADAM in Databricks Community Edition!**
 - http://goo.gl/xK8x7s
Acknowledgements

• UC Berkeley: Matt Massie, Timothy Danford, André Schumacher, Jey Kottalam, Karen Feng, Eric Tu, Niranjan Kumar, Ananth Pallaseni, Michael Heuer, Alyssa Morrow, Frank A. Nothaft, Justin Paschall, Anthony D. Joseph, Dave Patterson
• Mt. Sinai: Arun Ahuja, Neal Sidhwaney, Ryan Williams, Michael Linderman, Jeff Hammerbacher
• GenomeBridge: Carl Yeksigian
• Cloudera: Uri Laserson, Tom White
• Microsoft Research: Ravi Pandya, Bill Bolosky
• UC Santa Cruz: Benedict Paten, David Haussler, Hannes Schmidt, Beau Norgeot, Audrey Musselman-Brown, John Vivian, Jacob Pfeil
• And many other open source contributors, especially Neil Ferguson, Andy Petrella, Xavier Tordior
• Total of >50 contributors to ADAM/BDG from >12 institutions

Thank you!

• Let’s Thank the TAs!
• Good luck on midterm 3!

Recall: Private Key Cryptography

• Private Key (Symmetric) Encryption:
 – Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

Recall: Public Key Encryption Details

• Idea: K_{public} can be made public, keep $K_{private}$ private

Insecure Channel

• Gives message privacy (restricted receiver):
 – Public keys (secure destination points) can be acquired by anyone/used by anyone
 – Only person with private key can decrypt message
• What about authentication?
 – Use combination of private and public key
 – Alice → Bob: [(I’m Alice)$_{private}$ Rest of message]$_{public}$
 – Provides restricted sender and receiver
• But: how does Alice know that it was Bob who sent her B_{public}? And vice versa...
 – Need a certificate authority to sign keys!