CS 162 Operating Systems and Systems Programming

Professor: Anthony Joseph
Spring 2002

L ecture 3:
Concurrency: Processes, Threads, and Address Spaces

3.0

3.1

311

312

Main point:
What are processes?
How are they related to threads and address spaces?

Concurrency

Definitions:
Uniprogramming: one process at a time (e.g., MS/DOS, Macintosh)

Easier for operating system builder: get rid of problem of concurrency by defining
it away. For persona computers, ideawas. one user does only one thing at a
time.

Harder for user: can't work while waiting for printer

M ultiprogramming: more than one process at a time (UNIX, OS2, Windows
NT). Note: Thisis often called multitasking, but multitasking sometimes has
other meanings — see below — so not used in this course.

The basic problem of concurrency:

Hardware: single CPU, 1/O interrupts.
API: users think they have machine to themselves.

OS has to coordinate al the activity on a machine: multiple users, 1/O interrupts, etc.

How can it keep all these things straight?

CS 162 Spring 2002 Lecture 3 7

Answer: Decompose hard problem into simpler ones. Instead of dealing with
everything going on at once, separate into logical abstractions that we can dedl
with one at atime.

3.2 Processes
The notion of a*“process’ is a central concept for Operating Systems.

Process: Operating system abstraction to represent what is needed to run a single
program (thisisthe traditional UNIX definition)

Formally, a processis a sequentia stream of execution in its own address space.

3.21 Two partsto a (traditional Unix) process:

1. Sequential program execution: the code in the processis executed as a
single, sequential stream of execution (no concurrency inside a process). This
is known as athread of control.

2. State Information: everything specific to a particular execution of a program:

Encapsulates protection: address space

CPU registers
Main memory (contents of address space)
I/0 state (in UNIX thisis represented by file descriptors)

CS 162 Spring 2002 Lecture 3 207

3.2.2 Process=? Program

A programis, for example, a set of C statements or commands (vi, 1)

main(){

AQ{

}

PROGRAM

main({

AQ{

heap

stack

man

registers, PC
PROCESS

1. Moreto aprocess than just a program:
Program isjust part of process state.

| run emacs on lecture.txt, you run emacs on homework.java — same

program, different processes.

2. Lessto aprocess than a program:

A program can invoke more than one process to get the job done
CC starts up cpp, ccl, cc2, as, Id (each are programs themselves)

CS 162 Spring 2002 Lecture 3

317

3.3

331

332

Multiple Threads of Control

The traditional notion of a Process can be extended to alow for additiona
concurrency:

Thread: a sequential execution stream within a process (concurrency)
(Sometimes called: a "lightweight " process.). Provides theillusion that each
activity (or thread) is running on its own CPU, entirely sequentially.

Addressspace: dl the state needed to run a program (literally, all the addresses
that can be touched by the program). Provides theillusion that a program is
running on its own machine (protection).

Why separ ate the concept of athread from that of a process?

1. Discussthe "thread" part of a process (concurrency), separately from the
"address space” part of aprocess (protection).

2. Many situations where you want multiple threads per address space.
Question: Why would you want this?

Multithreading: a single program made up of a number of different concurrent
activities (sometimes called multitasking, asin Ada, just to be confusing!)

Examples of multithreaded programs

1. Embedded systems: elevators, planes, medical systems, wristwatches, etc.
Single program, concurrent operations.

2. Most modern OS kernels: internally concurrent because have to deal with
concurrent requests by multiple users. But no protection needed within
kerndl.

3. Database Server: provides access to shared data by potentially many
concurrent users. Also has background utility processing that must get done.

CS 162 Spring 2002 Lecture 3 a7

4. Network servers: user applications that get multiple requests concurrently off
the network. Again, single program, multiple concurrent operations
(examples: file servers, Web server, and airline reservation systems)

5. Pardlel programming: split program into multiple threads to make it run
faster. Thisis called multiprocessing.

Multiprogramming = multiple jobs or processes
Multiprocessing = multiple CPUs

Some multiprocessors are in fact uniprogrammed — multiple threads in one
address space, but only run one program at atime.

3.3.3 Thread State

What state does a thread have?
Some state shared by all threads in a process/address space:
Contents of memory (global variables, heap)
1/O state (file system)
Some state "private” to each thread — each thread has its own copy
CPU registers (including, program counter)
Execution stack —what is this?

Execution stack: where parameters, temporary variables, and return PC are kept,

while called procedures are executing (for example, where are A's variables kept,
while B, C are executing?)

CS 162 Spring 2002 Lecture 3 57

A(int tmp) {

if (tmp<2)
B0 A;tmp=2
printf(tmp);
}
BO{ C
CO;
) B
CO{
A(2);
} A;tmp=1
A Execution stack

Threads encapsulate concurrency; addr ess spaces encapsulate protection:
Keeps a buggy program from trashing everything else on the system.
Address stateis passive, thread isactive

3.4 Classification

Real operating systems have either
One or many address spaces
One or many threads per address space

of address spaces. one many
of threads per address

space:

One MS/DOS, Macintosh traditional UNIX

Many embedded systems Mach, OS/2 Windows 95,
Javaos, Pilot (PC) Windows NT, Solaris,

Linux, HP-UX, ...

Examples:

1. MS/DOS - one thread, one address space
2. Traditional UNIX — one thread per address space, many address spaces

CS 162 Spring 2002 Lecture 3 6/7

3. Mach, Microsoft NT, new UNIX (Linux, Solaris, HPUX) — many threads per
address space, many address spaces

4. Embedded systems (Geoworks, VxWorks, JavaOs, etc.). Also, Pilot (the
operating system on the first personal computer ever built) — many threads,
one address space (idea was: no need for protection if single user)

3.5 Summary
Processes have two parts: threads and address spaces.
Book talks about processes. when this concerns concurrency, really talking about

thread portion of a process; when this concerns protection, really talking about
address space portion of a process.

CS 162 Spring 2002 Lecture 3 17

