CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph
Spring 2002

L ecture 5: Independent vs. cooper ating threads

5.0 Main points

Thread Creation
Why do we need to handle cooperating threads?
Atomic operations

5.1 Thread creation

Thread " fork" — create anew thread, three arguments:
Pointer to gpplication routine to execute (fcnPtr)
Pointer to arguments records (fcnArgPtr)
Size of stack to alocate

Thread fork implementation:
Sanity check arguments.
Enter kernel mode and alocate a stack.
Allocate anew TCB and initidize its register fidds. In particular, the
stack pointer is made to point at the stack, the PC return address is
made to point at an OS (assembler) routine ThreadRoot, and two of the
registers are initidized to fenPtr and fecnArgPtr
Put the newly dlocated TCB on the ready list (Runnable). Thiswill
causeit to eventudly be dispatched by run_new_thread, and Start
running the routine ThreadRoot.
ThreadRoot:
Do start-up housekeeping (e.g., record start time).
Return to user mode.
Cdl fenPtr(fenArgPir).
Do threed finishtup:cal ThreadFinish.
ThreedFinish:

CS 162 Spring 2002 Lecture 5 1/6

Put any threads waiting on the termination of this thread on the ready
lig.

Can't dedllocate thread yet, Snce we're sill running on its stack.
Record thread as “waitingToBeDestroyed”.

Cdl run_new_thread to run anther thread. ThreadHouseK eeping will
examine waithingToBeDestroyed and deallocate the finished thread' s
TCB and stack.

run_new_t hread() {
newThread = Pi ckNewThread();
swi tch(cur Thread, newThread);
Thr eadHouseKeepi ng(); /* discussed later */

}

Thread fork is not the same thing as UNIX "fork”. UNIX fork crestes a new process,
S0 it hasto create a new address space, in addition to a new thread.

For now, don’'t worry about how switching between different processes address
spacesis done.

Thread fork is very much like an asynchronous procedure cal — it means, go do this
work, where the caling thread does not wait for the calee to complete. What if the
cdling threed needs to wait?

Thread Join — wait for aforked thread to finish.

Thus, atraditiond procedure cdl islogicaly equivaent to doing afork then immediately
doing ajoin.

Thisisanormd procedure cal:

A() { BO): }
BO { }

CS 162 Spring 2002 Lecture 5 2/6

The procedure A can dso be implemented as.

AQ) {
Thread t = new Thread;
t - >For k(B);
t->Join();

}

5.2 Multiprocessing vs. Multiprogramming
Multiprocessing = multiple CPU
Multiprogramming = multiple jobs or processes
Definition of “run concurrently” — scheduler is free to run threads in any order (eg.,
FIFO, random, etc.)

For example:

B > Multiprocessing

A > B .C.

Multiprogramming
Alelclale]|B]

Digpatcher can choose to run each thread to completion, or time-dicein big chunks, or
time dice s0 that each thread executes only one ingtruction at atime (Smulating a
multiprocessor, where each CPU operatesin lockstep).

CS 162 Spring 2002 Lecture 5 3/6

If the dispatcher can do any of the above, programs must work under al cases, for dl
interleavings.

So how can you know if your concurrent program works? Whether all interleavings
will work?

5.3 Definitions

I ndependent threads:
No state shared with other threads
Determinigtic — input state determines result
Reproducible
Scheduling order doesn't matter

Cooperating threads:
Shared state
Non-determinigtic
Nonreproducible

Nontreproducibility and non-determinism means that bugs can be intermittent. This
makes debugging redly hard!

5.4 Why allow cooperating threads?

People cooperate; and computers model peopl€e's behavior, so computers at some level
have to cooperate!

1. Shareresourcesinformation
One computer, many users
One bank baance, many ATMs
Embedded systems (ex: robot control)

CS 162 Spring 2002 Lecture 5 4/6

2. Speedup
Overlgp I/0O and computation
- UNIX file system does read ahead
Multiprocessors — chop up program into smaller pieces

3. Modularity
chop large problem up into Smpler pieces.

For example, to compile: gcc—cpp | ccl | cc2 |as|Id

This makes the system easier to extend; you can replace the assembler without
changing the loader.

5.5 Some simple concurrent programs

Most of the time, threads are working on separate data, so scheduling order doesn't
matter:

Thread A Thread B

What about: initidly,y = 12

X =y +1 y =y * 2

What are the possible valuesfor x after the above?
What are the possible values of x below?

Can't say anything useful about a concurrent program without knowing what are the
underlying indivisble operationd

CS 162 Spring 2002 Lecture 5 5/6

5.6 Atomic operations

What we want is some way of alowing athread to perform a task without having other
threads interfere with the task.

Atomic oper ation: an operation that ways runsto completion, or not at al. Itis
indivisible: it can't be stopped in the middle, and its state can’'t be modified by
someone else during the operation

On mogt machines, memory reference and assgnment (i.e., load and store) of words
are atomic.

Many indructions are not atomic. For example, on most 32-bit architectures, double
precision floating point store is not aomic; it involves two separate memory operations.

CS 162 Spring 2002 Lecture 5 6/6

