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CS 162 Operating Systems and Systems Programming 
Professor: Anthony D. Joseph 

Spring 2002 
 

Lecture 5: Independent vs. cooperating threads 
 

5.0 Main points 
Thread Creation 
Why do we need to handle cooperating threads? 
Atomic operations 
 

5.1 Thread creation 
 
Thread "fork" – create a new thread, three arguments: 

• Pointer to application routine to execute (fcnPtr) 
• Pointer to arguments records (fcnArgPtr) 
• Size of stack to allocate 

 
Thread fork implementation: 

• Sanity check arguments. 
• Enter kernel mode and allocate a stack. 
• Allocate a new TCB and initialize its register fields. In particular, the 

stack pointer is made to point at the stack, the PC return address is 
made to point at an OS (assembler) routine ThreadRoot, and two of the 
registers are initialized to fcnPtr and fcnArgPtr 

• Put the newly allocated TCB on the ready list (Runnable). This will 
cause it to eventually be dispatched by run_new_thread, and start 
running the routine ThreadRoot. 

• ThreadRoot: 
• Do start-up housekeeping (e.g., record start time). 
• Return to user mode. 
• Call fcnPtr(fcnArgPtr). 
• Do thread finish-up:call ThreadFinish. 

• ThreadFinish: 
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• Put any threads waiting on the termination of this thread on the ready 
list. 

• Can’t deallocate thread yet, since we’re still running on its stack. 
Record thread as “waitingToBeDestroyed”. 

• Call run_new_thread to run anther thread. ThreadHouseKeeping will 
examine waithingToBeDestroyed and deallocate the finished thread’s 
TCB and stack. 

 
 
 

run_new_thread() { 
newThread = PickNewThread(); 
switch(curThread, newThread); 
ThreadHouseKeeping(); /* discussed later */ 

} 
 
Thread fork is not the same thing as UNIX "fork".  UNIX fork creates a new process, 
so it has to create a new address space, in addition to a new thread. 
 
For now, don’t worry about how switching between different processes’ address 
spaces is done. 
 
Thread fork is very much like an asynchronous procedure call – it means, go do this 
work, where the calling thread does not wait for the callee to complete.  What if the 
calling thread needs to wait? 
 
 
Thread Join – wait for a forked thread to finish. 
 
Thus, a traditional procedure call is logically equivalent to doing a fork then immediately 
doing a join. 

 
 This is a normal procedure call: 

A() { B(); } 
B() { } 
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The procedure A can also be implemented as: 

A'() {  
Thread t = new Thread;  
t->Fork(B); 
t->Join();  

} 
 

 
 
 

5.2 Multiprocessing vs. Multiprogramming 
Multiprocessing = multiple CPU 
Multiprogramming = multiple jobs or processes 
Definition of “run concurrently” – scheduler is free to run threads in any order (e.g., 
FIFO, random, etc.) 
 
For example: 

A 
B 
C

Multiprocessing

Multiprogramming

A B C

A B C A B B

 
 
 

Dispatcher can choose to run each thread to completion, or time-slice in big chunks, or 
time slice so that each thread executes only one instruction at a time (simulating a 
multiprocessor, where each CPU operates in lockstep). 
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If the dispatcher can do any of the above, programs must work under all cases, for all 
interleavings.  
 

 
So how can you know if your concurrent program works?  Whether all interleavings 
will work? 
 

5.3 Definitions 
Independent threads : 

• No state shared with other threads 
• Deterministic – input state determines result 
• Reproducible  
• Scheduling order doesn't matter 
 

 
Cooperating threads: 

• Shared state 
• Non-deterministic 
• Non-reproducible 

 
Non-reproducibility and non-determinism means that bugs can be intermittent. This 
makes debugging really hard! 
 

 

5.4 Why allow cooperating threads? 
 
 

People cooperate; and computers model people's behavior, so computers at some level 
have to cooperate! 
 
1. Share resources/information 

• One computer, many users 
• One bank balance, many ATMs  
• Embedded systems (ex: robot control) 
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2. Speedup 
• Overlap I/O and computation 

•  UNIX file system does read ahead 
• Multiprocessors – chop up program into smaller pieces 

 
3. Modularity 

• chop large problem up into simpler pieces. 
For example, to compile: gcc – cpp | cc1 | cc2 | as | ld  
 
This makes the system easier to extend; you can replace the assembler without 
changing the loader. 

 

5.5 Some simple concurrent programs 
 
Most of the time, threads are working on separate data, so scheduling order doesn't 
matter: 

 
Thread A Thread B 

x = 1 y = 2 
 

What about: initially, y = 12 
x = 1 y = 2 
 

x = y + 1 y = y * 2 
 

What are the possible values for x after the above?  
What are the possible values of x below? 

    

x = 1 x = 2 
 

Can't say anything useful about a concurrent program without knowing what are the 
underlying indivisible operations! 
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5.6 Atomic operations 
 
What we want is some way of allowing a thread to perform a task without having other 
threads interfere with the task. 
 
Atomic operation: an operation that always runs to completion, or not at all. It is 
indivisible: it can’t be stopped in the middle, and its state can’t be modified by 
someone else during the operation. 

 
On most machines, memory reference and assignment (i.e., load and store) of words 
are atomic. 
 
Many instructions are not atomic. For example, on most 32-bit architectures, double 
precision floating point store is not atomic; it involves two separate memory operations. 
 


