CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002

Lecture 11: CPU Scheduling

11.0 Main Points

Scheduling policy gods
Policy options
Implementation considerations

Earlier, said digpatcher can choose any thread on the ready ligt to run. But how isthe
OSto decide, when it has a choice?

11.1 Scheduling Policy Goals

1. Minimizeresponsetime: egosed time to do an operation (or job)
Response time iswhat the user sees. elgpsed time to
Echo akeystroke in editor
Compile aprogram
Run alarge scientific problem
2. Maximizethroughput: operations (or jobs) per second

Two parts to maximizing throughput
a. Minimize overhead (for example, context switching)

b. Efficient use of system resour ces (not only CPU, but disk, memory, €tc.)

3. Fairness: share CPU among usersin some equitable way
What does fairness mean?

Minimize average response time? We will argue fairness is a tradeoff against average response

time; can get better average response time by making system|ess fair.

CS 162 Spring 2002 Lecture 11 1/10

11.2 Assumptions
Bunch of dgorithmsfor CPU scheduling — big area of research inthe early 70's.

These assume:
One program per user
One thread per program
Programs are independent

Clearly, these are unredidtic but they smplify the problem so it can be solved. Open
issueis: what happensif you remove these congraints?

Also assume an execution model consisting of CPU/IO burdts. Thet is, aprogram
typicaly usesthe CPU for some period of time, then does I/0, then uses the CPU
again. Thus, for each scheduling decision the question iswhich job to give the CPU to
for use by itsnext CPU burst. Notethat in atimedicing system ajob may be forced to
give up the CPU before its current CPU burdt isfinished. Likewise, ajob may give up
the CPU beforeitstimediceis expired.

11.3 Scheduling policies

11.3.1 FIFO

Different names for the same thing:
FCFS —fird comefirg serve
FIFO —firg in first out
Run until done

In early systems, FIFO meant, one program kept CPU until it completely finished. With
grict uniprogramming, if have to wait for 1/O, keep processor.

Later, FIFO just means, keep CPU until thread blocks (thisiswhat I'll assume).
FIFO Pros & Cons:

+dmple
— ghort jobs get stuck behind long jobs

CS 162 Spring 2002 Lecture 11 2/10

11.3.2 Round Robin

Solution? Add timer, and preempt CPU from long-running jobs. Just about every rea
operating system does something of this flavor.

Round-robin: after time dice, move thread to back of the queue
In some sensg, it'sfair — each job gets equal shot at the CPU.

11.3.2.1 How do you choose time dlice?

1) What if too big?
Response time suffers

2) What if too smd|?
Throughput suffers. Spend al your time context switching, none getting real work
done.

In practice, need to balance thesetwo. Typica time dice today is between 10—100
milliseconds; typica timedice overhead is 0.1 — 1 millisecond, so roughly 1% overhead
due to time-didng.

11.3.2.2 Comparison between FIFO and Round Robin

Asauming zero-cogt time dice, is RR dways better than FIFO?
Forexample: 10 jobs, each take 100 seconds of CPU time.
Round Robin time dice of 1 second.
All jobs gart a the sametime:

CS 162 Spring 2002 Lecture 11 3/10

Job completion times

Job # FIFO Round Robin
1 100 991
2 200 992
9 900 999
10 1000 1000

Round robin runs one second from each job, before going back to thefirst. So each
job accumulates 99 seconds of CPU time before any finish.

Both round robin and FIFO finish at the same time, but aver age response time is much
worse under RR than under FIFO.

Thus, round robin Pros & Cons.
+ better for short jobs
— poor when jobs are same length

11.3.3 SIF/SRTF

SJF: Shortest Job First (sometimes caled STCF - Shortest Time to Completion
Firs)t. Run whatever job hasthe least amount of stuff to do.

SRTF: Shortest Remaining Time First (sometimes cdled STRCF: Shortest
Remaining Time to Completion First). Preemptive verson of SIF— if job arrives that
has a shorter time to completion than the remaining time on the current job, immediately
preempt CPU to give to new job.

These can be applied ether to awhole program or to the current CPU burst of each
program.

Ideais get short jobs out of the system. This has abig effect on short jobs, but only a
amall effect on long jobs. Result is better aver age response time.

CS 162 Spring 2002 Lecture 11 4/10

In fact, SIF/SRTF are the best you can possibly do, at minimizing average response
time (SJF among non-preemptive policies, SRTF among preemptive policies). Can
provethey're optima. Since SRTF isaways at least as good as SJF, focus on SRTF.

11.3.3.1 Comparison of SRTF with FIFO and Round Robin

What if dl jobs are the same length? SRTF becomes the same as FIFO (in other
words, FIFO isas good as you can do if dl jobs are the same length).

What if jobs have varying length? SRTF (and round robin): short jobs don't get stuck
behind long jobs.

Exampleto illugrate the benefits of SRTF:

Three jobs:
A, B: both CPU bound, run for week
C: 1/O bound, loop
1 msof CPU
10 msof disk I/O

By itself, C uses 90% of the disk; by itsdf, A or B could use 100% of the CPU. What
happens if we try to share system between A, B, and C?

With FIFO:
Once A or B get in, keep CPU for two weeks

With Round Robin (100 mstime dice):
Only get 5% disk utilization

With Round Robin (1 mstime dice):

Get nearly 90% disk utilization — amost as good as C aone.
But we haven't dowed A or B by dl that much: they till get 90% of the CPU. (Lots of
wakeups, however!)

CS 162 Spring 2002 Lecture 11 5/10

With SRTF: no needless preemptions (run C as soon as possible, run either A or B to
completion)

RR, 100 mstime dice

RR, 1 mstime dice

SRCTF
Effect of RR time quanta and SRTF on /O bound jobs

A downsdeto SRTFisthat it can lead to Starvation. Lots of short jobs can keep long
jobs from making any progress.

SRTF Pros& Cons:
+ Optima (average response time)
— Hard to predict the future
— Unfar

CS 162 Spring 2002 Lecture 11 6/10

11.3.3.2 Knowledge of future

11.34

Problem: SIF/SRTF require knowledge of the future,
How do you know how long program will run for, or how long its next CPU burst will
be?

Some systems ask the user: when you submit ajob like acompile, have to say how long
it will take.

To stop chesting, if your job takes more than what you said, system kills your job.
Start dl over. Likewith the Banker's dgorithm — hard to predict resource usage in
advance.

Instead, can't redly know how long things will take, but can use SRTF as ayardgtick,
for measuring other policies. Optima, so can't do any better than that!

Multilevel feedback

Centrd ideaiin computer science (occursin lots of places): use past to predict future.
If program was 1/0 bound in pagt, likely to bein future.

If computer behavior were random, induction wouldn't help. Or if past behavior was
opposite of current behavior.

But program behavior isregular, most of thetime. How do we exploit this? If past
behavior predicts future behavior, then favor jobs that have been at CPU least amount
of time, to gpproximate SRTH!

Adaptive palicies. change policy based on past behavior. Used in CPU scheduling, in
virtual memory, in file systlems, eic.

Multi-level feedback queues (first used in CTSS, example of an adaptive policy for
CPU scheduling): multiple queues, each with different priority. OS does round robin at
esch priority leve — run highest priority jobsfirst; once those finish, run next highest
priority, eic. Round robin time dice increases exponentialy a lower priorities.

CS 162 Spring 2002 Lecture 11 7/10

O 4

Multilevel feedback queues

Adjust each job's priority asfollows (details vary):
1. Job dartsin highest priority queue.
2. If timeout expires, drop one level
3. If timeout doesn't expire, push up one leve (or back to top)

Result approximates SRTF: CPU bound jobs drop like arock, while short-running 1/0
bound jobs stay near top.

Multilevel feedback queues (like SRTF) are il unfair: long running jobs may never get
the CPU.

Countermeasure: user action that can foil intent of the OS designer. For multilevel
feedback, countermeasure would be to put in meaningless 1/0 to keep job's priority
high. Of coursg, if everyone did this, wouldn't work!

11.3.5 Fairness

What should we do about fairness? Since SRTF isoptima and unfair, any increasein
fairness (for instance by giving long jobs afraction of the CPU, even when there are
shorter jobsto run) will have to hurt average response time.

How do we implement fairness?

CS 162 Spring 2002 Lecture 11 8/10

Could give each queue afraction of the CPU.
But thisisn't dwaysfar. What if there's one long-running job, and 100 short-
running ones?

Could adjust priorities: increase priority of jobs, asthey don't get service. Thisis
what's done in UNIX.
Problemisthat thisis ad hoc — what rate should you increase priorities? And,
as system gets overloaded, no job gets CPU time, SO everyoneincreasesin
priority. Theresult isthat interactive jobs suffer — both short and long jobs
have high priority!

Instead, use lottery scheduling: give every job some number of lottery tickets, and on
each time dice, randomly pick awinning ticket. On average, CPU timeis proportiond
to # of tickets givento each job.

How do you assign tickets? To gpproximate SRTF, short running jobs get more, long
running jobs get fewer. To avoid Sarvation, every job gets at least one ticket (so
everyone makes progress).

Advantage over drict priority scheduling: behaves gracefully asload changes. Adding
or deleting ajob affects dl jobs proportionately, independent of how many tickets each
job has. For example, if short jobs get 10 tickets, and long jobs get 1 each, then:

short jobs / % of CPU each short % of CPU each long
#long jobs job gets job gets

V1 91% 9%

0/2 NA 50%

2/0 50% NA

10/1 10% 1%

1/10 50% 5%

11.4 A Different Point-of-View

When do the detalls of scheduling policy and fairness redly maiter?
When there aren’'t enough resources to go around.

CS 162 Spring 2002 Lecture 11 9/10

Question: When should you smply buy afaster computer?
One gpproach: Buy when it will pay for itsdf in improved response time (assuming
you' re paying for worse response time in reduced productivity, customer angs, ...)

Might think that you should buy afaster X when X is utilized 100% of thetime. But for
mogt systems, response time goes to infinity, as utilization goes to 100%.

How does response time vary with load?

Response
Time

Load
An interesting implication of this curve:
Most scheduling dgorithms will work just fine aslong asyou say in the“linear”
portion of theload curve, wheress life gets miserable no matter what you try to
do when you'rein the “ steep” part of the load curve.
Arguesfor buying afaster X when you reach the “knee’ of the load curve.

CS 162 Spring 2002 Lecture 11 10/10

