CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002

Lecture 13: Address Trandation

13.0 Main Points

Options for managing memory:
Peging
Segmentation
Multi-leve trandation
Paged page tables
Inverted page tables
Comparison among options

CS 162 Spring 2002 Lecture 13 114

13.1 Hardware Translation Overview

Physica

Virtud

(MMU)

Address Trandation
/ Box \ Memory

Dataread or write
(untrand ated)

Think of memory in two ways.
View from the CPU — what program sees, virtud memory
View from memory — physical memory

Trandaion implemented in hardware; controlled in software. There are many kinds of
hardware trandation schemes. Start with the smplest!

CS 162 Spring 2002 Lecture 13 2/14

13.2 Base and Bounds

Base and bounds: Each program loaded into contiguous regions of physica memory,
but with protection between programs. Firgt built in the Cray-1.

error

virtua address

bounds

base

physical address

Hardwar e Implementation of Base and Bounds Trandation

Program hasilluson it is running on its own dedicated machine, with memory sarting at
0 and going up to Size = bounds. Like linker-loader, program gets contiguous region of
memory. But unlike linker-loader, protection: program can only touch locations in
physica memory between base and base + bounds.

CS 162 Spring 2002 Lecture 13 3/14

virtud memory physical memory

0
code 6250
bound
data
stack
6250 + bound

Virtual and Physical Memory Viewsin Base and Bounds System
Provides leve of indirection: OS can move bits around behind the program's back, for

instance, if program needs to grow beyond its bounds, or if need to coaesce fragments
of memory. Stop program, copy bits, change base and bounds registers, restart.

Only the OS gets to change the base and bounds! Clearly, user program can't, or ese
lose protection.

With base& bounds system, what gets saved/restored on a context switch?

CS 162 Spring 2002 Lecture 13 4/14

Hardware cost:

2 regigers

Adder

Comparator
Plus, dows down hardware because need to take time to do add/compare on every
memory reference.

Base and bounds, Pros:
+ Smple, fast
Cons:
1. Hard to share between programs
For example, suppose two copies of "vi"
Want to share code
Want data and stack to be different
Can't do this with base and bounds!
2. Complex memory dlocation
Fird fit, best fit, buddy system. Particularly bad if want address space to
grow dynamicaly (e.g., the heap).

In worst case, have to shuffle large chunks of memoary to fit new program.
3. Doesn't dlow heap, stack to grow dynamicaly — want to put these asfar

goart as possblein virtud memory, so that they can grow to whatever size
is needed.

13.3 Segmentation
A segment isaregion of logicaly contiguous memory.

Ideaisto generaize base and bounds, by dlowing atable of base& bound pairs.

CS 162 Spring 2002 Lecture 13 5/14

virtual address

offset

phys
Seg ptr

virt seg # _—

Seg Siz

\

physical address

For example, what does it ook like with this segment table, in virtud memory and
physica memory? Assume al4 bit addresses divided up as.
2 bit segment 1D, and a 12 bit segment offst.

Virtud segment # Physca ssgment Sart Segment Sze
0 code 0x4000 0x700

1 data 0 0x500

2 - 0 0

3 sack 0x2000 0x1000

CS 162 Spring 2002 Lecture 13

6/14

0 0
off Aff
1000
14ff 2000
21t
3000
3fff
4000
46ff

This should seem a bit Strange: the virtua address Space has gapsinit! Each segment
gets mapped to contiguous locations in physical memory, but may be gaps between
segments.

But acorrect program will never address gaps; if it does, trap to kernel and then core
dump. Minor exception: stack, heap can grow. InUNIX, sbr k() increasessze of
heap segment. For stack, just take fault, system automaticaly increases Size of stack.

Detail: Need protection mode in segmentation table. For example, code segment would
be read-only (only execution and loads are dlowed). Data and stack segment would
be read-write (stores alowed).

What must be saved/restored on context switch? Typicaly, segment table stored in
CPU, not in memory, becauseit' ssmall.

CS 162 Spring 2002 Lecture 13 7114

Example What happens with the above segment table, with the following as virtua
memory contents? Code does:

strlen(x);
Virtual memory

Main: 240 store 1108, r2
244 store pc +8, r31
248 jump 360
24c

Strlen: 360 loadbyte (r2), r3
420 jump (r31)

X: 1108 abc\0

Initidly, pc = 240.

Physical Memory

X: 108 666

Main: 4240 store 1108, r2
4244 store pc +8, r31
4248 jump 360
424c

Strien: 4360 loadbyte (r2), r3
420 jump (r31)

Segmentation Pros & Cons.
+ Efficient for sparse address spaces
+ Easy to share whole segments (for example, code segment)
— Complex memory dlocation

CS 162 Spring 2002 Lecture 13 8/14

Still need firgt fit, best fit, etc., and re-shuffling to codesce free fragments, if no sngle
free space is big enough for anew segment.

How do we make memory dlocation smple and easy?

13.4 Paging
Allocate physicd memory in terms of fixed size chunks of memory, or pages.

Simpler, because allows use of abitmap. What's a bitmap?
001111100000001100

Each bit represents one page of physical memory — 1 means dlocated, 0 means

unallocated. Lots smpler than base& bounds or segmentation

Operating system controls mapping: any page of virtud memory can go anywherein

physica memory.

__Wwrerror
vinM\ page table size
virtud

ot offset
pag page table ptr
page table
S
> gge " offset
physica address

Each address space has its own page table, in physica memory. Hardware needs two
specid registers— pointer to physical location of page table, and page table size.

CS 162 Spring 2002 Lecture 13 9/14

Example: suppose page Szeis 4 bytes.

virtual memory physical memory

a 0

b

c 4)

d 4 !

e 3 L

f 1 I

a 8

h

page table

! 0xC

J e

K f

! a
h

0x10

a
b
c
d

Whereisvirtua address 6? 9?

Questions.

1. What must be saved and restored on a context switch?

2. What if page 9zeisvery smdl? For example, VAX had a page size of 512 bytes.
3. What if page dzeisredly big? Why not use an infinite page 9ze?

Fragmentation: wasted space
External — free gaps between dlocated chunks
I nter nal — free gaps because don't need dl of alocated chunk

With segmentation need to re-shuffle ssgments to avoid externd fragmentation.
Paging suffers from internd fragmentation.

4. What if address spaceis sparse? For example: on UNIX, code starts at 0, stack
startsat 231 — 1. With 1KB pages, 2 million page table entries!

CS 162 Spring 2002 Lecture 13 10/14

Paging Pros& Cons.
+ smple memory dlocation
+ easy to share
— big page tables if sparse address space

Is there a solution that alows smple memory dlocation, easy to share memory, and is
efficient for sparse address spaces?

How about combining paging and segmentation?

13.5 Multi-level translation

Multi-level trandation. Usetree of tables. Lowest leve is page table, so that physical
memory can be dlocated usng abitmap. Higher levels are typicaly segmented.

For example, here' s a picture of a2-leve trandation scheme:
virtual address

Virtseg# Virt page# ‘offset

page table
ptr table §z

o
\

page table

_ | plphyspage# |offset
segment table x physical address

error

Just like recursion — could have any number of levels. Mogt architectures today do this.

Quedtions:
1. What must be saved/restored on context switch?

CS 162 Spring 2002 Lecture 13 11/14

2. How do we share memory? Can share entire segment, or asingle page.

Example: Suppose we have 24 bit virtud addresses partitioned as 4 bits of
segment #, 8 bits of virtua page#, and 12 hits of offset.

Segment Table
Page table pointer Pege table 5ze
0x2000 O0x14
0x1000 OxD

Physical Memory
0x1000 Ox6
Oxb
0x4

0x2000 0x13

0x2a
0x3

(the above ar e portions of the page tablesfor the segments)

What do the following addresses trandate to?
0x0020707?
0x201016 ?
0x14c684 ?
0x210014 ?

Multileve trandation:
+ Only need to dlocate as many page table entries as we need.
In other words, sparse address spaces are easy.
+ Easy memory dlocation

CS 162 Spring 2002 Lecture 13 12/14

+ Share at segment or page leve (need additiond reference counting)
— Pointer per page (typicaly 4KB - 16KB pages today)

— Page tables need to be contiguous
— Two (or more, if > 2 levels) lookups per memory reference

13.6 Paged page tables

A different solution to sparse address spacesisto alow the page tables to be paged —

only need to dlocate physica memory for page table entries you redlly use. Top leve

page tableisin physca memory, dl lower leves of hierarchy are in virtud memory (and
therefore can be dlocated in fixed size page framesin physical memory).

virtual address

virtual page #

offsat

|

page table ptr 4@

|

virtual address of page thl entry

CS 162 Spring 2002 Lecture 13

tables

virtual page # offset
ptr to page table of
page tables M ;Lon
Fo0h up
page table of page

Data \

Memory
Lookup

phys page # ‘ offset

Memory
Lookup

phys page # ‘ of fset
phys address of page
table entry
13/14

This means that potentidly, each memory reference involves three memory references
(onefor the system page table, one for the user page table, and one for the red datd).
How do we reduce the overhead of trandation?

Caching in Trandation Lookasde Buffers (TLB’s).

Rdative to multilevel trandation, paged page tables are more efficient if usngaTLB. If
virtuad address of page table entry isin TLB, can skip one or more levels of trandation.

13.7 Inverted page tables

What is an efficient data structure for doing lookups? Hash table. Why not use ahash
table to trandate from virtual addressto a physical address.

Thisis cdled an inverted page table for historical reasons.

Take virtud page#, run hash function on it, index into hash table to find page table entry
with physical page frame #.

Independent of Sze of address space,
Advantages.
+ O(1) lookup to do trandation
+ Requires page table space proportiond to how many pages are actualy being
used, not proportiona to size of address space — with 64 bit address spaces,
thisisabig win!
— Overhead of managing hash chains, etc.

CS 162 Spring 2002 Lecture 13 14/14

