CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002

Lecture17: File Systems and Disk M anagement

17.0 Main Points

Implementing file system absiraction

Comparison among disk management algorithms

Physcd Redity Hle System Abgtraction

Block oriented Byte oriented

Physical sector #'s Named files

No protection Users protected from each other
Data might be corrupted if machine Robust to machine failures
crashes

17.1 File System Components

Disk management: how to arrange collection of disk blocksinto files
Naming: user gives file name, not track 50, platter 5, etc.

Protection: keep information secure

Rédiability/durability: when system crashes, lose stuff in memory, but want filesto be

durable.

17.2 User vs. System View of a File

Usar'sview:

Durable data structures.
Systems view (system cdl interface):
Collection of bytes (UNIX)

CS 162 Spring 2002 Lecture 17

112

Sysem’'sview (ingde OS):
Collection of blocks (ablock isalogicd transfer unit, while a sector isthe
physica transfer unit. Block size >= sector size; in UNIX, block sizeis
4KB.)

17.2.1 Trandating from user to system view

What happensiif user says give me bytes 2 — 127
a. Fetch block corresponding to those bytes
b. Return just the correct portion of the block

What about: write bytes 2 — 127
a. Fetch block
b. Modify portion
c. Write out block

Everything inddefile sysemisin whole sze blocks. For example, getc, putc => buffers
4096 bytes, even if interfaceisone byte a atime.

From now on, fileis collection of blocks.

17.3 File Usage Patterns

How do users accessfiles?

1. Sequentid access— bytesread in order (give me the next X bytes, then give me
next)

2. Random access — read/write dement out of middle of array
(gvemebytesi —j)

3. Content-based access — “find me 100 bytes starting with JOSEPH”

Many file systems don’t provide #3; instead, database is built on top to index content
(requires efficient random access)

How arefilestypicdly used?

1. Mos filesareamdl (for example, . | ogi n, . c files)

CS 162 Spring 2002 Lecture 17 2/12

2. Lagefilesuse up mos of the disk space

3. Largefilesaccount for most of the bytes trandferred to/from disk

Bad news need everything to be efficient.
Need smdl filesto be efficient, snce lots of them.
Need large files to be efficient, snce most of the disk space, most of the I/0O
dueto them

17.4 Disk Management Policies

1741

How do we organize file on disk?

Common data structures
Need a“file header,” onefor each file which disk sectors are associated with each file.

Also, need bitmap to represent free space on disk, one bit per block (or sector).
Blocks numbered in cylinder-major order, so that adjacent numbered blocks can be
accessed without seeks or rotationa delay.

Track 0, surface 0, sector O, 1, ... | surface 1, sector 0, 1 ... | ... | track 1, surface 1,
sector O...

Caching: every OS today keeps a cache of recently used disk blocks in memory, to
avoid having to go to disk. Common to al organizations. For now, assume no cache,
and add it |ater.

CS 162 Spring 2002 Lecture 17 3/12

17.4.2 Contiguousallocation
User saysin advance how big file will be

Search bit map (using best fit/firg fit) to locate space for file

File heeder contains,
Firg sector in file
File size (# of sectors)

Pros & cons:
+ Fast sequential access
+ Easy random access
— Externd fragmentation
—Hard to grow files

17.4.3 Linked files
Each block, pointer to next on disk (Alto)

file header

null

File header pointer to first block on disk

CS 162 Spring 2002 Lecture 17

4/12

Pros & Cons:
+ Can grow files dynamicaly
+ Freelig managed same asfile
— Sequentia access. seek between each block
— ——Random access: horrible
— Unrdliable (lose block, lose rest of file)

MS-DOS used asmilar linked gpproach but instead of embedding linksin pages, they
used a separate structure called the File Allocation Table (FAT). The FAT has an entry
for each block on the disk and the entries corresponding to the blocks of a particular file
arelinked up.

17.4.4 Indexed files (Nachos, VM S)
User declares max file Sze; system alocates a file header to hold an array of pointers
big enough to point to file size number of blocks.

file header disk blocks

>

null

Pros & Cons:

+ Can eadlly grow up to space alocated for descriptor

+ Random accessisfast

— Clumsy to grow file bigger than table Sze

— Sl lots of seeks: blocks can be spread al over the disk, so sequential accessis
dow.

CS 162 Spring 2002 Lecture 17 5/12

17.4.5 Multilevel indexed (UNIX 4.1)
Key idea efficient for small files, but ill dlow big files

File heeder contains 13 pointers (fixed size table, pointers not dl equivadent) (the
header is called an “inode’ in UNIX)

Firg ten are pointers to data blocks. (If fileis smdl enough, some pointerswill be
NULL.)

What if you dlocate 11th block?
Pointer to an indirect block — ablock of pointersto data blocks. Gives us 256
blocks, + 10 (from file header) = /4 MB

What if you dlocate a 267th block?
Pointer to a doubly indirect block —ablock of pointersto indirect blocks (in
turn, block of pointers to data blocks). Gives us about 64K blocks => 64MB

What if want afile bigger than this? One last pointer — what should it point to?

Instead, pointer to triply indirect block — block of pointers to doubly indirect blocks
(whichare...)

Thus, file header is;

First 10 data block pointers — point to one block each, so 10 blocks
11 indirect block pointer — points to 256 blocks
12 doubly indirect block pointer — points to 64K blocks
13 triply indirect block pointer — pointsto 16M blocks

CS 162 Spring 2002 Lecture 17 6/12

file header disk blocks

. 1
2 — 2
\\

3 -

10
11 1

12 \ S
13, \ T

266
256 >
267
>
256 I
256
\ >
_—— 256
256
256 I
256
256

1. Bad news Stll an upper limit on file 5ze ~ 16 GB.
2. Pointers get filled in dynamicdly: need to dlocate indirect block only when file

grows > 10 blocks. If smdl file, no indirection needed.
3. How many disk accesses to reach block #23? Which are they?

CS 162 Spring 2002 Lecture 17 7112

How about block # 5?
How about block # 3407?

UNIX Pros & Cons:
+ Smple (more or less)
+ Files can easily expand (up to a point)
+ Smdl files particularly chegp and easy
—Vey largefiles, spend lots of time reading indirect blocks
— Lots of seeks

17.4.6 DEMOS
OSfor Cray-1, mid to late 70's. File system approach corresponds to segmentation.

Cray-1 had12 ns cycletime, so CPU:disk speed ratio about the same as today (afew
million ingtructions = 1 seek).

Idea reduce disk seeks by using contiguous alocation in normal case, but alow
flexibility to have noncontiguous alocation.

File header: table of base & size (10 “block group” pointers)

b - on disk
ase sze I

file header

Each “block group” — a contiguous region of blocks

CS 162 Spring 2002 Lecture 17 8/12

Arel0 block group pointers enough? No. If need more than 10 block groups, set flag

in file header: BIGFILE.

Each table entry now pointsto an indirect block group — a block group of pointersto

block groups.
base dze on disk —»
file header
indirect block group

block group

Can get huge files this way: Suppose 1000 blocks in ablock group (can be bigger or

amdler) => 80 GB max filesze

How do you find an available block group? Use bit map to find block of 0's

Pros & cons:
+ Easy to find free block groups
+ Free areas merge automaticaly
— When disk fills up:
a. Nolong runs of blocks (fragmentation)
b. High CPU overhead to find free block

In practice, disks are dwaysfull.

CS 162 Spring 2002 Lecture 17

9/12

17.4.7

Solution:
Don't let disk get full — keep portion in reserve

Free count = # blocks free in bitmap.
Normally, don't even try dlocate if free count = 0.

Changethisto: don't dlocate if free count < reserve

Why do this?
Tradeoff: pay for more disk space, get contiguous alocation

How much of areserve do you need?
In practice, 10% seems like enough.

UNIX BSD 4.2
Exactly the same as BSD 4.1 (same file header and triply indirect blocks), except
incorporated some ideas from DEMOS:

Uses bitmap dlocation in place of freeligt

Attempt to dlocate files contiguoudy

10% reserved disk space

SKip sector positioning

Problem: when you creste afile, don't know how big it will become (in UNIX, most
writes are by appending to thefile). So how much contiguous space do you allocate for
afile, when it's created?

In Demoas, power of 2 growth: once it grows pastl MB, dlocate 2MB, etc.

InBSD 4.2, just find some range of free blocks, put each new file at the front of a
different range. When need to expand afile, you firg try successve blocks in bitmap.

Also, rotationa delay can cause a problem, even with sequentid files.

CS 162 Spring 2002 Lecture 17 10/12

Read one block, do processing, and read next block. In the meantime, disk has
continued turning. If have to wait for entire rotation, problem! Go from reading at disk
bandwidth, to reading one sector every rotation.

Two solutions:
Skip sector pogitioning (BSD 4.2)

Read ahead/disk track buffers — read next block right after first, even if
gpplication has't asked for it yet. This could be done ether by OS (read ahead)
or by disk itsdf (track buffers).

17.5 Disk scheduling
Disk can do only one request a atime; what order do you choose to do requests?

If O or 1 request is queued, the choiceiseasy. But what if morethan 1? Try to arrange
requests in some order that reduces seek time.

17.5.1 FIFO order

Fair among requesters, but order of arrival may be to random spots on the disk => long
seeks

CS 162 Spring 2002 Lecture 17 11/12

175.2 SSTF

SSTF: shortest seek timefirst. Pick the request that's closest on the disk. (Although
cdled SSTF, today, include rotationd delay in caculation, since rotation can be aslong
as seek.)

Head

Order requests will be serviced usng SSTF.

SSTFisgood at reducing seeks, but may get starvation

17.5.3 SCAN

SCAN implements an devator agorithm: take the closest request in the direction of
travel. No Starvation, but retains flavor of SSTF.

Circular-Scan (C-SCAN): only goesin onedirection --- it skips any requests on the
way back. Thisisfarer than SCAN, which is biased towards pages in the middle of
the disk.

CS 162 Spring 2002 Lecture 17 12/12

