CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002
L ecture 18: Naming, Directories, and File Caching

18.0 Main Points
How do users namefiles? What is aname?
Lookup: given aname, how do you trandate it into afile header?

18.1 Abstractions: File Systems, Directories, and Names

The user is given the view of a single namespace for files, but this namespace can be
implemented over multiple physical devices or even over multiple systems.

Likewise, it is useful to split asngle physicad device into severa logica devices, such as
ones for swap space, different types of uses etc (for example, my laptop has on logical
device for regular files and one for multimedia gpplications). Can vary the file-system
parameters per logical device (eg., block size, various palicies).

Logicd file system

Multiple physcd file sysems
Logica devices

Physica devices

PWNPE

In UNIX, these file sysems must be “mounted” to be used. Mounting afile sysem into
the hierarchy of theroot file system. A file sysem contains aboot block in the first
sector (if it is aboot-able file system) and a superblock, which contains the Setic
parameters of the file systlem such asits dlocated size, block szes, dlocation policies, etc.
It can dso contain afree block list.

Inthe kernd, afileisidentified according to its<logical device number, inode
number> pair. Inodesin afile sysem are numbered sequentidly. In some (early)
versions of UNIX theinodes are kept in asingle array, and the inode number is just the
index into that array.

Note, as discussed below, akey service of the file system is the mapping of human
reedable file names to locations on physica devices. Thisincludes the notion of
“directories’, which are just files containing mappings of namesto inodes (of detafiles or
other directories).

CS 162 Spring 2002 Lecture 18 1/10

Typicdly, ahuman-readable file name is bound to an actud file through the use of an
“open” command. On open, the file path name is traversed and the inode is located.
Permissions and other congtraints can be checked at thistime.

Sysem maintains an open file table in order to cache the mapping for use by other file
operations (read, write, etc.). After opening the file, these other operations refer to the
file by usng the index into thistable. The index points to afile descriptor that keeps
important information about the file such asits current file position pointer, which
indicates (at least in UNIX) which byte of thefileisto be read or written next.

In amulti-user system there are typicaly two levels of open file table: aglobd table and a
per processtable. The per process table keeps track of the files currently opened by
that process and process-specific information such as the current file position. An entry in
thistable points to the relevant entry in the globa (system-wide) table. The global table
has one entry per open file (regardless of how many processes have opened it). It tracks
the number of processes that have opened the file and closes the file when this number
goes to zero.

18.2 File Header Storage

Whereisfile header stored on disk? In (early) UNIX and DOS/Windows FAT file
system, it is stored in a specid array in the outermost cylinders.

data, indirect

blocks, doubly
indirect ...

UNIX refersto file by index into array — tells it where to find the file header
UNIX-isns
“I-node’ — file header

“I-number” — index into the array

Origind UNIX file header organization, seems strange:

CS 162 Spring 2002 Lecture 18 2/10

1. Header not stored anywhere near the data blocks. To read asmall file, seek to get
header, seek back to data.

2. Hxed 9ze st when disk isformatted. Means maximum number of files that can be
created.

Later versons of UNIX moved the header information to be closer to the data blocks —
typicdly, the inode for afile would be stored in the same “cylinder group” asthe parent
directory of thefile’ (makes|s of that directory run fast).

+ Rdiability: whatever happensto the disk, you can find dl of thefiles

+ UNIX BSD 4.2 puts portion of the file heeder array on each cylinder. For smdll
directories, can fit dl data, file headers, etc. in same cylinder => no seekd!

+ File headers are much smaller than awhole block (afew hundred bytes), so multiple
file headers fetched from disk at sametime

Question: do you ever look at afile header without reading thefile? If not, put thefile
header asthefirg block of the filel

Turns out that fetching the file header is something like 4 times more common in UNIX
than reading thefile (Is, make).

18.3 Naming

18.3.1 Options

1. Useindex (ask users specify i-node number). Easier for system, not as easy for
users.

2. Textname

3. lcon

With icons or text, gill have to map name -> index

CS 162 Spring 2002 Lecture 18 3/10

18.3.2 Directories

Directory maps name -> file index (where to find file header)
Directory isjust atable of file name, fileindex pairs.

Generd ideax relation. Table associating things together.
Directories just aspecid kind of arelation, connecting file name to index (ditto with
password file, caches, etc.)

Each directory is stored as afile, containing alist of “name’, index pairs.

But, only OSis permitted to modify directory.

Any program can read the directory file. Thisishow “Is’ works.

Problem: means hard to change file directory structure!

18.3.3 Directory Hierarchy

Directories organized into hierarchical structure

/joelabedeffilel
A root
A subdir joe
~subdir abcde

Top-level directory has pair: <joe, #>. joe has pair <abcde, #>, €tc.

How many disk I/O's to accessfirst byte of filel?

Read in file header for root (always at fixed spot on disk).
Read in firgt data block for root.

Read in file header for joe

Read in first data block for joe.

Read in file header for abocde

Read in first data block for abcde.

o g bk~ wbdrE

CS 162 Spring 2002 Lecture 18 4/10

7. Readinfile header for filel
8. Read infirs datablock for filel

Current working directory: short cut for both user and system. Each address space
doresfileindex for current directory. Allows user to oecify relative filename, instead
of absolute path (if no leading “/”).

Thus, to read first byte of file, just last 4 steps above.

How can this possibly be efficient? Caching (of course!)

18.3.4 Not really a hierarchy...

Many systems dlow directory structure to be organized as an acyclic graph or even a

(potentialy) cyclic graph.

UNIX does this through the concept of “links’. Two flavors:

1) Hard links — different namesfor the samefile.

All names are equdly vdid
Implemented by having multiple directory entries point to same inode
Quedtion: how to know when you can delete afile?
Can only be used with non-directory files.
Can't cross file system boundaries

2) Soft links—“shortcut” pointer to other file
Implemented by smply storing the logica name of the actud file
Fewer restrictions: can point to directories, cross file systems, etc.
No protection from deletions — may be “dangling” or point to wrong file!
Cycles are possible — Question: how does system avoid infinite loops when
following a pah?

18.4 File Caching and Related Topics
Use caching and prefetching to achieve good performance in afile system.
Three key idess.
Caching of disk blocks read into memory
Prefetching of disk blocks expected to be needed soon
Delayed writes

18.5 Caching
Key idea (as usual): exploit locdity of usein file sysems by caching disk blocksin
memoary.

CS 162 Spring 2002 Lecture 18 5/10

Use an LRU replacement scheme.
Easy to do since we can afford the overhead of maintaining timestamps for each
disk block being cached.

Advantages.
Works very wdl for name trandation,
Workswell in genera aslong as memory is big enough to accommodate a
hogt’ sworking set of files.

Disadvantages.
LRU loses when some gpplication scans a big enough part of thefile
system, thereby flushing the cache with data that is used only once; for
example
find . —exec grep foo {} \;

Some systems dlow applications to provide the file system with hints about which
replacement policy to use. For example, an gpplication might indicate that it will not use
afile more than once. Thefile system would then know to discard any disk blocks of
the file once they have been used.

Question: how much memory should the OS dlocate to the file system cache vs. the
VM paging store?

If we dlocate too much memory to the file system cache then we won't be able to run
many applicationsin pardld.

If we alocate too little memory to the file systlem cache then many gpplications may run
dowly.

Solution: let the boundary between the two vary o that the disk access rates for paging
and file access are balanced.

18.6 Prefetching
K ey idea: exploit the fact that the most common form of file accessis sequentia by
prefetching subsequent disk blocks ahead of the current read request (if they’re not
dready in memory).

How much should one prefetch?
Request too many blocks and we start imposing unnecessary delays on
concurrent file requests by other processes.
Request too few blocks and too many seeks (and rotationa delays) will
occur among concurrent file requests.

CS 162 Spring 2002 Lecture 18 6/10

18.7 Delayed Writes
K ey idea: Batch writes to optimize disk scheduling and alocetion.

Unix systems use a 30 second write-behind policy:
Writes only copy data from a user processto kernd disk block buffers,
Dirty disk block buffers are only flushed to disk once every 30 seconds.

Advantages.
Disk scheduler can efficiently order lots of requests.
Disk dlocation dgorithm can be run with correct Sze vadue for afile.
Somefiles need never get written to disk! (E.g. temporary scratch files
writtenin /tmp frequently don’t exist for 30 seconds.)

Disadvantages:
What if the system crashes before your file has been written out? Worse
yet, what if the system crashes before a directory file has been written out?

Topic of the next lecture!

18.8 Protection and Access Control
Use access contral lists and capability lists to control access to resources such asfiles.

18.9 Protection

Goals:
Prevent accidentd and madicioudy destructive behavior.
Ensure fair resource usage.

A key didtinction to make: policy vs. mechaniam.
M echanism: how something isto be done.
Policy: what isto be done.

18.10 Access Control

18.10.1 Domain structure
Access/usage rights associated with particular domains

Example: usar/kernel mode => two domains

CS 162 Spring 2002 Lecture 18 7/10

Unix:
Each user isadomain
Super-user doman
Groups of users (and groups)

18.10.2Types of accessrights

What kinds of access rights do we need for files?
- Read
Write
Execute

For directories:
List
Modify
Dedete

For access rights themsdlves:
Owner (I have theright to change the access rights for some resource)
Copy (I have the right to give someone else a copy of an accessright |
have)
Control (I have the right to revoke someone else's access rights)

18.11.3 Access control matrix
Conceptudly, we can think of the system enforcing access controls based on a giant
table that encodes dl access rights held by each domain in the system.

For example:
Filel | FHle2 |Fle3 |Dirl | Dir2
User A rw r WX Imd I
Group B r rw Im

The access control matrix represents the policy we want to enforce.

CS 162 Spring 2002 Lecture 18 8/10

There are two principad means of providing a mechanism to do so:
Access control lists

Capebility lists

Access control lists: keep lists of access rights for each domain with each object.
Fil e3:
User A rwx
Goup B rw

Capability lists: keep lists of access rights for each object with each domain.
User A
Filel: rw
File2: r

Which is better?
ACLs dlow easy changing of an object’s permissons.
Example: add Users C, D, and F with rw permissions.
Capability ligts dlow easy changing of adomain’s permissons.
Example: you are promoted to system administrator and should be
given accessto dl sysem files

Combination approach:
- Objectshave ACLs
Users have capabilities, called “groups’ or “roles’
ACLs can refer to users or groups
Change permissions on an object by modify its ACL
Change broad user permissions via changes in group membership

CS 162 Spring 2002 Lecture 18 9/10

18.10.3 Revocation
How does one revoke someone' s access rights to a particular object?

Easy with ACLs. just remove entry from the list. Takes effect immediately since the
ACL ischecked on each object access.

Harder to do with capabilities since they aren’'t stored with the object being controlled:
Not s0 bad in asingle machine: could keep dl capability ligsin awell-
known place (e.g. the OS capability table).

Very hard in distributed system, where remote hosts may have crashed or
may not cooperate. (Thistopic will be covered in greater detail in afuture
lecture.)
Various approaches possible:
- Put expiration dates on capabilities and force reacquistion.
Put epoch numbers on capabilities and revoke dl capabilities by
bumping the epoch number (which gets checked on each access
attempt).
Maintain back pointersto al capabilities that have been handed out.
(Tough if capabilities can be copied.)
Maintain arevocation list that gets checked on every access attempt.

CS 162 Spring 2002 Lecture 18 10/10

