CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002

L ecture 24: Protection and Security in Distributed
Systems

24.0 Main Point
Why you shouldn't ever trust acomputer system

God: Prevent misuse of computers

24.1 Definitions
Types of misuse
1. Accidenta
2. Intentiond

Protection isto prevent either accidenta or intentional misuse. Security isto prevent
intentiona misuse.

Two partsto this.
Conceptua understanding of how to make systems more secure
Some examples, to illustrate why providing security isredly hard in
practice.

CS 162 Spring 2002 Lecture 24 /19

Three piecesto security:
1. Authentication —who user is
2. Authorization — who is dlowed to do what
3. Enforcement — make sure people do only what they are supposed to do

Loophole in any of these, problem: For example:

1. Loginassuperuser and you' ve circumvented authentication

2. Loginassdf and you can do anything you want to your own resources. What if
you run some program that decidesto erase dl your files?

3. Canyou trust software to correctly enforce decisons about 1 + 2

24.2 Authentication

Common approach: passwords. Shared secret between two parties. Since only |
know password, machine can assumeit isme.

Problem 1: system must keep copy of secret, to check against passwords. What if
malicious user gains accessto thislist of passwords?
Encryption — transformation thet is difficult to reverse without the right key

For example: UNIX / et ¢/ passwd file
passwd -> one way transform (hash) -> encrypted passwd

System stores only encrypted version, so OK even if someone readsthefilel When
you type in your password, System compares encrypted versons.

Problem 2: Passwords must be long and obscure
Paradox: Short passwords are easy to crack
Long ones, people write down!

Technology means we have to use longer passwords: UNIX initidly required only
lowercase, 5 letter passwords

How long for an exhaustive search? 26° = 10 million

In 1975, 10 msto check a password -> 1 day
In 1992, 0.001 ms to check a password -> 10 seconds

CS 162 Spring 2002 Lecture 24 2/19

Many people choose even smpler passwords, such as English words — takes even less
time to check for dl wordsin the dictionary!

Some (partid) solutions.
a. Extend everyon€e s password with a unique number (stored in password

file), so can't crack multiple passwords at atime. UNIX uses 12-hit “sdt”
(makesit 22 or 4096 times harder).
The st isused to increase the cost of dictionary attacks. If a sdt were not
used, it would be possible to precompute a tape with all the wordsin the
dictionary encrypted (hashed), the dictionary attack would then degenerate
to smply streaming the pre-encrypted fields from the tape, and comparing
them to any password files being attacked.

A second reason for the use of sdlts, is that the way that the At is
combined in afirst stage which permutes the password with the sdt is
designed to frudtrate the use of off-the-shelf DES hardware.

Without sdts, it would take less than 10 seconds to crack every account on
entire sysem!

b. Require more complex passwords. For example: 6 |etters (uppercase and
lowercase), numbers, and specid characters:
70° » 600 billion, or 6 days

Except, people still pick common patterns (ex: 5 lower case letters, plus
one number).

c. Makeit take along time to check each password. For example, delay
every remote login attempt by 1 second.

d. Assgnvery long passwords. Give everyone asmart card (or ATM card)
to carry around to remember the password. Requires physical theft to
steal password.

Long passwords or passphrases can have more entropy (randomness ->
harder to crack).

CS 162 Spring 2002 Lecture 24 3/19

Smart cards — generate pseudorandom number (client and server both have
the same initia seed and accurate clocks). Can have a keyboard (for PIN
code) or user can prepend/append PIN — helps prevent theft problems.

Problem 3: Can you trust the encryption dgorithm? Example: one dgorithm that was
thought to be safe had a back door. If thereisaback door, means you don't need to
do complete exhaugtive search.

Also, security through obscurity doesn't work (Example GSM encryption dgorithm
was secret, accidentally released — Berkeley graduate students cracked it in afew
hours! Also, found that the dgorithm was purposefully weskened!)

24.3 Authentication in distributed systems
Two roles for encryption:

a. Authentication
b. Secrecy — I don't want anyone to know this data (e.g., medical records, etc.)

24.3.1 Private key encryption
Private key: use an encryption agorithm that can be easly reversed, given the correct
key (and hard to reverse without the key)

CS 162 Spring 2002 Lecture 24 4/19

password
secure
encrypt
— plaintext > pher text
insecure
Spy transmission
secure
v
4— . decrypt
plaintext - yp cipher text
CIA
password

From cipher text, can’t derive plain text (decode) without password.
From plain text and cipher text, can’t derive password!

Aslong as password stays secret, get both secrecy and authentication.
But how do you get shared secret in both places? (e.g., key distribution)
Authentication server (example: Kerberos)

Server keeps list of passwords, provides away for two parties, A, B to talk to one
another, aslong asthey trust server.

CS 162 Spring 2002 Lecture 24 5/19

24.3.2

Notation:
K.y isakey for taking between x and y.
(..)" means, encrypt message (...) with the key K.

A asks server for key:
A->S (Hi! I'dlikeakey for talking between A and B)

Server gives back specid session key encrypted using B’ s key:
S->A (UseKy, (Thisis Al Use K)K®)<

A gives B the ticket:
A ->B (Thisis Al Use Kg)<®

Lotsof detalls

1. Addintimestampsto limit how long a key will be used and to prevent a machine
from replaying messages later!

2. Also haveto include encrypted checksums (hashed version of message), to prevent
malicious user from insarting suff into the message or changing the message!

3. Want to minimize # of times password must be typed in, and minimize amount of
time password is stored on machine. Soinitidly ask the server for atemporary
password, using the red password for authentication:

A->S (Give me atemporary secret)

S>A (Use Kiempsa fOr the next 8 hours)<*

Can now use Kiemp-sa iN place of Ks, above.

Public key encryption

With a private key system you encrypt a message and decrypt the message with the
same key. Private key systems are dso called symmetric systems. Such systems
require that parties share a trusted authentication server.

What if A and B don't share atrusted authentication server?

CS 162 Spring 2002 Lecture 24 6/19

Public key encryption is an dternative to private key; separates authentication from
SEcrecy.

With apublic key system, each key isapair: Kouiic, K private, SUCh thet:
(text)<PUPic = ciphertext
(ciphertext)<P"va® = text

ad
(text)<P™va® = ciphertext’
NOTE: not same ciphertext as above!
(ciphertext’)<PUPlc = text
and:

(ciphertext)<PPic 1= text
(ciphertext’)<P™va® | = text

and: can't derive Kpypiic from Kpivae OF Vice versa.

ldeais. Kpivae KEpt secret, Kpuic put in atelephone directory.
For example, assume KFyivae and KFpuic are Fred' s keys and K Jyivae and K Jyuic are
Joe' skeys:

(|’ m Fred!)KFprivate
Everyone can read it, but only Fred can send it (authentication)

(H| !)KFpuinC

Anyone can send it, but only Fred can read it (secrecy)

((l ™m Fred!)KFprivaIe Hi!)Kquinc
Only Fred can serd it, only Joe can read it.

Problem: how do you trust dictionary of public keys?

24.4 Authorization
Authorization: who can do what.

CS 162 Spring 2002 Lecture 24 7/19

Basic concepts covered in aprevious lecture — quick review:

Access control matrix: formdization of dl the permissonsin the system

Objects filel file2 file3
users

A Rw r

B rw

C r

For example, one box represents C can read file3.

Potentidly huge # of users, operations, so impracticd to store dl of these

Two agpproaches.

1. Accesscontral list — store dl permissions for dl users with each object
Still, might be lots of userd UNIX addresses this by having each file store: r, w, X
for owner, group, world. More recent systems provide way of specifying groups of
users, and permissions for each group.

2. Capability ligt — each process, stores dl objects the process has permission to touch
Lots of capability systems built in the past; idea out of favor today. But page tables
are an example. Each process haslist of pagesit has accessto; not each page has
list of processes that are permitted to accessit.

Thereal problem: how fine-grained should authorization be?

Example of the problem:

Suppose you buy a copy of anew game from “Joe s Game World” and then

run it.

It's running with your userid.

CS 162 Spring 2002 Lecture 24 8/19

It removes dl thefilesyou own, including the project due the next day!

How can you prevent this?
Have to run the program under some userid. Could create a second games
userid for the user, which has no write privileges.
Like the nobody userid in UNIX — can't do much.
But what if the game needs to write out afile recording scores? Would need
to modify your games userid to have write privileges to one particular file
(or directory).
But what about non-game programs you want to use, such as Quicken?
Now you need to create your own private quicken userid, if you want to
make sure that the copy of Quicken you bought can't corrupt nor+
Quicken-related files.
What about word processor programs, which need to have read/write
access to entire categories of files?

One semi-satisfactory way to ded with this problem isto only use software from
sources you trugt, thereby deding with the problem by means of aform of
authentication.

That' sfine for big, established firms, like Microsoft. But what about new start-ups?
Who “vdidates’ them?

Can edtablish vaidation agencies. But how easy isit to fool them? We have no red
experience with this yet.
An even bigger risk these days.
“Programs’ can appear on your machine in the form of macros atached to
your documents (asis the case with Microsoft Word and Excdl)
Java gpplets that are part of Web pages!

Macros (typicdly) runwith full privileges and may get automaticaly invoked as part of
initidly accessng a document, or as part of saving the document later on.

Macros can be used as virus vectors — replicating themsel ves when documents are
opened or copied.

CS 162 Spring 2002 Lecture 24 9/19

Java gpplets are normally sand-boxed: the Java Virtud Machine insgde a Web browser
runs them with no privileges except the ability to send and retrieve data from the server
that the Web page they are part of isfrom.

However, as Web page designers have created ever more sophisticated applets, they
have started demanding that Java alow limited access to the resources of the client
meachine that the Web browser is being run on.

The generd problem:
How do | specify the exact privileges that something running on my behdf
should have?
How to avoid making this specification task so onerous that no one will put
up with it?

24.5 Enforcement

Enforcer checks passwords, access control lists, etc.
Any bug in enforcer means: way for maicious user to gain ability to do anything!

In UNIX, superuser has dl the powers of the UNIX kernd — can do anything. Because
of coarse-grained access control, lots of stuff has to run as superuser in order to work.
If there’ sabug in any one of these programs, you' re hosed!

Paradox:
a. Bullet-proof enforcer
Only known way is to make enforcer as small as possble.
Easier to make correct, but Imple-minded protection moddl
b. Fancy protection —only minima privilege necessary
Hard to get right.

24.6 State of the world in security
Authentication — encryption
But almost nobody encrypts!

Authorization — access control

CS 162 Spring 2002 Lecture 24 10/19

But many systems provide only very coarse-grained access control (ex: UNIX
— means, need to turn off protection to enable sharing)

Enforcement — kernd mode
Hard to write amillion line program without bugs, and any bug is a potentia
security loophole.

24.7 Classes of security problems

24.7.1 Abuseof privilege

24.7.2

If the superuser isevil, we'redl in trouble
Nothing you can do about this

I mposter
Break into system by pretending to be someone el se.

For example, in UNIX, cansetupan . r host s fileto dlow logins from one machine
to another, without having to re-type password.

Also dlows“rah” — command to do an operation on a remote node.

Combination means. send rsh request, pretending to be from the trusted user, to ingtdl
rhogsfile granting imposter full access

Similarly, if you have open X windows connection over the network, an imposter can
send messages appearing to be keystrokes from awindow, but redly they are

commands to give the imposter access.

Currently, X has no way of encrypting its packets — so no way to stop thig!

24.7.3 Trojan horse

One army gave another a present of awooden horse, army hidden inside.

Trojan horse gppears helpful, but redly does something harmful

CS 162 Spring 2002 Lecture 24 11/19

24.7.4 Salami attack

24.7.5

Idea: stedl or corrupt something alittle bit & atime.

For example: What do you do with al those partid pennies from bank interest?
Bank keepsit! Hacker re-programmed it so that the partid pennieswould go
into hisaccount. Doesn't seem like much, but if you are Bank of America, with
afew million customers, adds up preity quickly!

Eavesdropping

Listener — tap into serid line on the back of the terminal, or onto Ethernet. See
everything typed in; dmost everything goes over network unencrypted. For instance,
rlogin to remote machine, your password goes over the network unencrypted!

Spoiler — not geding information, just making system unusable. Just chews up system

resources, eectronic equivalent of vandaism.

How do you prevent these? Hard to build system that is both useful, and prevents
misuse.

24.8 Concrete Examples

24.8.1

Tenex —early 70's, BBN
Most popular system at universities before UNIX

Thought to be very secure. To demondtrate it, created ateam to try to find loopholes.
Gave them dl the source code and documentation (want code to be publicly available,
asin UNIX); gave them anorma account.

In 48 hours, they had every password in the system.

Here' s the code for the password check:
for (i =0; i < 8; i++)
if (userPasswd[i] !=
real Passwd[i])
go to error
L ooks innocuous, like you' d have to try al combinations. 256°

CS 162 Spring 2002 Lecture 24 12/19

Wrong!
Tenex dso used virtud memory, and it interacts badly with the above code.
Key idea force page faults a inopportune times, can break passwords quickly.

Arrangefirgt character in string to be the last character in page, rest to be on the next
page. Arrange for the page with the first character to bein memory, and rest to be on
disk (for example, by referencing lots of other pages, then referencing the first page).

alaaasaa

|
page in memory| page on disk

By timing how long the password check takes, can figure out whether the first character
is correct!

If fast, first char iswrong

If dow, firgt char isright, page fault, one of the others was wrong

Sotry dl firg characters, until oneisdow. Then put firgt two characters in memory,
and therest on disk. Try al second characters, until oneis dow.

Means takes only amaximum of 256 * 8 attempts to crack passwords.

Fix iseasy, don’'t stop until you look at dl the characters.
But how do you figure this out in advance?

CS 162 Spring 2002 Lecture 24 13/19

24.8.2

24.8.3

I nternet worm

Ten years ago, the worm broke into thousands of computers over Internet.

Three attacks:
1. Dictionary lookup-based password cracking
2. sendmall
— Debug mode, if configured wrong, can let anybody log in
3. fingerd
—finger adj@cs

fingerd didn’t check for length of string, but only alocated afixed sze array for it
on the stack. By passing a (carefully crafted) redly long string, a program could
overwrite fingerd's stack and get the program to cdl arbitrary code!

Got caught because the idea was to launch attacks on other systems from whatever
systems were broken into; so ended up bresking into same machine multiple times,
dragged CPU down so much that people noticed (was a bug in the code).

Variant of this problem: kernd checks system call parametersto prevent anyone from
corrupting it by passng bad arguments.

So kerndl code looks like:
Check parameters; if ok, use arguments

But what if gpplication is multithreaded? Can change contents of arguments after check
and before use!

Kevin Mitnick

Two attacks:

1. Migdirection: Identify system managers machines, then loop, requesting TCP
connections to those machines, until no more connections are permitted. Freezes
those machines.

Meanwhile

CS 162 Spring 2002 Lecture 24 14/19

2. Impogter: forge packetsto gppear asif legitimate (e.g., by replacing source address
in packet header), but redly from Mitnick.

If notice an open, idle rlogin connection, for example, can send packets asif user typed
command to add Mitnick to .rhosts.

24.8.4 Netscapefollies

Netscape claimed to provide secure communication, for example, so you could send a
credit card # over the Internet.

Three problems (reported in NYT):

1. Algorithm for picking sesson keys was predictable (used time of day). Brute force
allowed someone to break a sesson key in amatter of hours.

2. Made new version of Netscape to fix #1, available to users over Internet
(unencrypted!). Four byte patch to Netscape executable can make it dways use a
specific sesson key — so can insert backdoor by mangling packets containing
executable as they fly by on the Internet.

In fact, because of demand, they had a dozen mirror stes (including Berkeley) to
redistribute new version. So anyone with root access to any machine on LAN at
mirror Site could insert the backdoor.

3. Buggy helper applications. Aswith fingerd attack, *any* bug in either Netscape, or
its hel per applications (e.g., ghostview), can potertidly be exploited by creating a
Web page that when viewed, will insert a Trojan horse.

Can you trust an gpplication that was preloaded on your computer at the factory?
- Not redly, amgor computer manufacturer just shipped severa thousand
computerswith the CIH virus.
Software companies, PR firms, and others routingly release software that
contains viruses.

CS 162 Spring 2002 Lecture 24 15/19

24.8.5 Ken Thompson's self-replicating program

Bury Trojan horse in binaries, so there’s no evidence in the source

Replicatesitsaf to every UNIX system in the world, and even to new UNIX’s on new
platforms. No visblesgn.

Gave Ken Thompson the ability to log into any UNIX system in the world.

Two steps:

1. Makeit possble (easy)
2. Hideit (tricky)

Step 1. Modify | ogi n. ¢
A
if (name == “ken”)
don’t check password
log in as root
Ideais. hide change, so no one can seeit.

Step 2. Modify the C compiler
Instead of having the codein login, put it in the compiler:
B:
if see trigger,
insert Ainto input stream

Whenever the compiler seesatrigger (/* gobbledygook */), puts A into input
gream of the compiler

Now, don't need A inlogin.c, just need the trigger.
Need to get rid of the problem in the compiler
Step 3. Modify compiler to have:

if see trigger2
insert B+ Cinto input stream

CS 162 Spring 2002 Lecture 24 16/19

Thisis where sdf-replicating code comesin! Question for reader: can you writeaC
program that has no inputs, and outputs itself?
Step 4. Compile the compiler with C present

— Now it isin the binary for compiler

Step 5. Replace code with trigger2
Reault is— dl this Suff isonly in the binary for the compiler. Insde the binary
thereis C, ingde that, code for B, ingde that code for A. But source code only
needs trigger2!

Every time you recompile login.c, the compiler inserts the backdoor. Every time
you recompile the compiler, the compiler re-inserts the backdoor.

What happens when you port to anew machine? Need acompiler to generate
code; where does that compiler run?

On the old machine — C compiler iswritten in C!' So everytime you go to anew
machine, you infect the new compiler with the old one.

CS 162 Spring 2002 Lecture 24 17/19

24.9 How to Fix Security

Lots of examples of problems. How do we fix them?

Start with peoplé!
1. Security education is critica because people:
Write passwords down
Share passwords
Guess what, it’s not how you think!
Classic attack: Company hires hackers to break into new system. Hackers
break in two hours later!
How? Socid engineering
Arefiredlad off
Worker who waslad off sad, “I’ll show them I’'m important”
Encrypted warehouse inventory database!
Millions of items, where are they?
Tried to blackmail company, failed because company went public.
Solution is to provide training and proper safeguards (e.g., smart cards, limited
access). Easy conceptudly, hard in practice.
2. Secure digtribution of softwere:
Tight source access controls and code reviews.
Using source revision controls alows company to monitor changes and helps
recovery.
Use antivird software before releasing software.
Sign software distribution with company’s public key (use hash to detect
changes).
How do you get the key? Y ou don't.
Instead, software preloaded on your computer contains the key of atrusted
Certificate Authority. CA usestheir private key to encrypt the company’s public
key and information.
3. User’smachine determines sender and asks user for permission
Hasto validate key, verify contents haven't been tampered with while in trangt to
user.
4. Same process can be used for updates

CS 162 Spring 2002 Lecture 24 18/19

In practice, most companies don't use these mechanisms. And, when they do, it till
doesn't work if there are any holes.

Alternative is Java gpproach: Use sandboxing and careful control of access points.
Very difficult to get correct!

24.10 Lessons

1. Hard to re-secure after penetration
Wheat do you need to do remove the backdoor? Remove al the triggers?

What if he left another trigger in the editor — if you ever see anyone removing this
trigger, go back and re-insart it!

Re-write the entire OS in assembler? Maybe the assembler is corrupted!

Toggle in everything from scratch every time you log into the computer?

2. Hard to detect when system has been penetrated. Easy to make system forget

3. Any system with bugs has loopholes (and every system has bugd)
Summary: can't stop loopholes, can't tell if it's happened, can't get rid of it.

CS 162 Spring 2002 Lecture 24 19/19

