CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2002

L ecture 25: Course Review

25.0 Course Goals

1. Provide you with the knowledge you need to make informed decisions.
Isit better to buy a computer with more memory or afaster processor (or
faster memory versus faster processor)?
Why ismy company’s Web server dow? Is it the network, the server, the
goplication?

2. Experience with different design tradeoffs, choices, and decisions.
What isthe cost of using a software modem instead of a software modem?
Everything that’ s done in hardware can be done in software, but when does
it make sense?
How do | enable my company’s usersto share information with
collaborators at other companies? With good performance. Without
compromising Security.

3. Dedign abgtractions separating policy from mechanism
What abstractions should the operating system provide?
How should | implement privacy controls?

25.1 OS as lllusionist
We used the Operating System as starting point for understanding/anadyzing the issues.

Operating systems have two functions.
1. Coordinator and traffic cop
2. Standard services

Physcd Redity Abstraction

Single CPU Infinite # of CPUs (multiprogramming)
Interrupts Cooperating sequentia threads
Limited memory Unlimited virtud memory

CS 162 Spring 2002 Lecture 25 1/6

No protection Each address space has its own
mechine

Unrdiable, fixed Sze messages Rdiable, arbitrary messages and
network services

25.2 Concepts

WEe ve abstracted out three key concepts. They apply to more than just operating
sysems
1. Locdlity/Caching—basisfor TLB's, paging, file sysems, digtributed systems, etc.
Spatid versustempord locality
Thrashing
Multi-level hierarchies
Sameissuein HW and SW
2. Scheduling — adaptive management of resources
Congtrained resources require careful management
Multi-level adaptive feedback
Countermeasures for mishehaving users and gpplications
3. Layering — Abstraction on top of abstraction
Use divide and conquer to smplify ahard problem.
Makes it easier to design, debug, extend
Performance pendty

CS 162 Spring 2002 Lecture 25 2/6

25.3 Major topics

1. Threads. sate, credtion, dispatching
Why — Abgtraction for concurrency: overlap I/0 and computation, share HW
resources (and information) across multiple users and programs. Modularity
makes system easier to extend.
How — Context switching, and thread dispatching (mechanism).and scheduling.
Decompose task into smdler unitsfunctions.
But — performance overhead for context switching.

2. Synchronization: races, inconsgstency, semaphores, monitors, and condition

variables.

The cogt of concurrency! Without sharing concurrency is usaless, but remember
the “Too Much Milk Lecture’
Nont-reproducibility — Hard to debug!
Use atomic operations as a start, but complicated to use and OS interactions
(load/store, interrupt disable, test& set).
Create higher leve abstractions to ease the burden:

0 Criticd sections and mutud exclusion — palicy.

0 Locksand semaphores — mechanism.

0 Monitors. separate mutex (locks) and scheduling congtraints
(condition variables) — mechanisms.

Language-leve interactions with primitives. Be careful!
Biggest caveats. Deadlock and starvation

o Starvation: Indefinite waiting for aresource by athread (can end,
but doesn’'t have to).

o0 Deadlock: Circular chain of waiting (doesn’t end without externd
intervention). Requires: limited resource, no resource preemption,
multiple independent requests, circular chain of requests. Break the
chain — detect/fix or prevent

3. Scheduling: shortest (remaining) time to completion firgt, round robin, FIFO
Policy: minimize response time, maximize throughput, fair.
Lots of choices: dgorithm, time dice, dynamic adaptation (multi-level
feedback), etc. — most choices don’t really matter unless resources are
constrained.

4. Memory management & address spaces.
| solate processes/programs from al others and OS- protection.

CS 162 Spring 2002 Lecture 25 3/6

0 Dud mode operation: kernd versus user mode — operations
themsalves must be protected: How do you enter/leave kernel
mode?

0 Thiscan be done without hardware support:

= Strong typing
= Software fault isolation

0 But inter-process communication breaks this (bugs can lesk).

llluson of infinite memory:

0 Buildahierarchy out of fagt, andl -> large, smdl technologies

Trangparent (can't tell if physicd memory is shared)

0 Addresstrandation

0 Base & bounds, paging, sesgmentation, multi-level trandation, TLB's
for caching/performance (replacement policy and write-back/write-
through are consderations — thrashing).

o0 Complexity versus functiondity tradeoffs

5. Virtud memory: demand paging, thrashing
Exploit spatid and tempord locdity
Caching misses. compulsory, capacity, conflict, policy
Lots of page replacement policies: Again, most important when resources are
limited! Approximetions work well.
Application working set Sze isimportant
6. Flesysems
1/0 system performance: overhead, latency, bandwidth
0 Disk seeks, rotationa delay, sector sizes
0 Scheduling isimportant: FIFO, eevator (SCAN)
File headers and directories. abstraction of bytes, named files, protection,
durability
Management policies based upon file usage patterns
Caching for performance
Protection and access control are important
Transactions. Implement atomic, persistent operations (durability)
for unreiable components.
= Two-phase locking for coordinating multiple threads

o O O

7. Didributed computing
Cheaper, more rdiable, incrementd scdability

CS 162 Spring 2002 Lecture 25 4/6

In redlity, not more religble
Coordination is more difficult than in Sngle machine case.
8. Networks: protocol layers, windowing, RPC
Build protocols layer-by-layer
Lots of different network technologies
Gods. arbitrary message size, ordered, reliable, process-to-process, routed
anywhere, secure
Gods are hard (lots can go wrong)
Remote Procedure Call is key abstraction for 2-way communication:
0 Cross-doman communication
0 Locationtransparency
0 Microkernd isultimate in RPC usage
9. Network file systems. cache coherence
Transparent access to files on aremote disk: NFS, AFS
Caching, consgtency, and false sharing issues
Multiprocessors. shared-bus, switched, Network of Workstations (Smilar
problemsto filesystems)
10. Security: access control, encryption, Trojan horses
Why you should never trust a computer!
Intentional and accidental misuse
Three parts:
0 Authentication —who user is
= Passwords, encryption (private and public key encryption)
0 Authorization —who isdlowed to do what
= Accesscontrol ligts
0 Enforcement — make sure people do what they’ re supposed to do
= Kerne doesthisfor OS

25.4 Problem Areas

1. Performance
Abstractions like threads, RPC aren't free
Remember threadsin OS/2
Caching doesn’'t work when there' slittle locdity
2. Falures—how do we build systems that continue to work even when parts of the
system break?
Still aproblem today!

CS 162 Spring 2002 Lecture 25 5/6

3. Security — basic tradeoff between making computer systems easy to use vs. hard to
misuse

CS 162 Spring 2002 Lecture 25 6/6

