

CS 162 Spring 2003 Lecture 6 1/8

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 6: Synchronization

6.0 Main points

• More concurrency examples

• Synchronization primitives

6.1 A Larger Concurrent Program Example

6.1.1 ATM bank server example

Suppose we wanted to implement a server process that handles requests from an
ATM network to do things like deposit and withdraw money from bank
accounts.BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}

ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}

Deposit(acctId, amount) {

acct = GetAccount(acctId); /* May involve disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

Suppose we had a multiprocessor? Could run each invocation of ProcessRequest
in a separate thread to get parallelism.

Suppose we only had one CPU. We’d still like to overlap I/O with computation.
Without threads we would have to rewrite the code to look something like:

CS 162 Spring 2003 Lecture 6 2/8

BankServer() {

while (TRUE) {
event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}

With threads one could get overlapped I/O and computation without having to
“deconstruct” the code into fragments that run when the appropriate asynchronous
event has occurred.

Problem: In the threaded version shared state can get corrupted:

Thread 1 running Deposit: Thread 2 running Deposit:
load r1, acct->balance load r1, acct->balance
 add r1, amount2
 store r1, acct->balance

add r1, amount1
store r1, acct->balance

The dispatcher can choose to run each thread to completion or until it blocks. It
can time-slice in whatever size chunks it wants. If running on a multiprocessor
then instructions may be interleaved one at-a-time.

Threaded programs must work correctly for any interleaving of thread
instruction sequences.

Cooperating threaded programs are inherently non-deterministic and non-
reproducible. This makes them hard to debug and maintain unless they are
designed very carefully.

6.1.2 Another concurrent program example

CS 162 Spring 2003 Lecture 6 3/8

Two threads, A and B, compete with each other; one tries to increment a shared

counter, the other tries to decrement the counter.

For this example, assume that memory load and memory store are atomic, but

incrementing and decrementing are not atomic.

Thread A Thread B

i = 0

while (i < 10)

 i = i + 1;

print A wins

i = 0

while (i > -10)

 i = i - 1;

print B wins

Questions:

1. Who wins? Could be either.

2. Is it guaranteed that someone wins? Why not?

3. What if both threads have their own CPU, running in parallel at exactly the

same speed. Is it guaranteed that it goes on forever?

In fact, if they start at the same time, with A 1/2 an instruction ahead, B will win

quickly.

4. Could this happen on a uniprocessor?

Yes! Unlikely, but if you depend on it not happening, it will happen, and your

system will break and it will be very difficult to figure out why.

6.2 Motivation: “Too Much Milk”

 Person A Person B
3:00 Look in fridge. Out of milk.
3:05 Leave for store.
3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Buy milk. Leave for store.

CS 162 Spring 2003 Lecture 6 4/8

3:20 Arrive home, put milk away. Arrive at store.
3:25 Buy milk.
3:30 Arrive home, put milk away.

Oh no!

6.3 Definitions

Synchronization: using atomic operations to ensure cooperation between threads.

Mutual exclusion: ensuring that only one thread does a particular thing at a time.

One thread doing it excludes the other, and vice versa.

Critical section: piece of code that only one thread can execute at once. Only

one thread at a time will get into the section of code.

Lock: prevents someone from doing something.

1. Lock before entering critical section, before accessing shared data

2. Unlock when leaving, after done accessing shared data

3. Wait if locked

• Key idea – all synchronization involves waiting.

6.4 Too Much Milk: Solution #1

What are the correctness properties for the too much milk problem?

• Never more than one person buys

• Someone buys if needed

Restrict ourselves to only use atomic load and store operations as building blocks.

CS 162 Spring 2003 Lecture 6 5/8

Basic idea of solution #1:

1. Leave a note (kind of like “lock”)

2. Remove note (kind of like “unlock”)

3. don’t buy if note (wait)

Solution #1:

if (noMilk) {

if (noNote){

leave Note;

buy milk;

remove note;

}

}

Why doesn’t this work? Thread can get context switched after checking milk and

note, but before buying milk!

Our “solution” makes problem worse – fails only occasionally. Makes it really

hard to debug. Remember, constraint has to be satisfied, independent of what the

dispatcher does – timer can go off, and context switch can happen at any time.

CS 162 Spring 2003 Lecture 6 6/8

6.5 Too Much Milk Solution #2

How about labeled notes? That way, we can leave the note before checking the

milk.

Solution #2:

 Thread A Thread B

leave note A

if (noNote B){

if (noMilk)

buy milk

}

remove note A

leave note B

if (noNoteA){

if (noMilk)

buy milk

}

remove note B

Possible for neither thread to buy milk; context switches at exactly the wrong

times can lead each to think the other is going to buy.

Illustrates starvation: thread waits forever

6.6 Too Much Milk Solution #3

Solution #3:

 Thread A Thread B

leave note A

while (note B) // X

do nothing;

if (noMilk)

buy milk;

remove note A

leave note B

if (noNoteA){ // Y

if (noMilk)

buy milk

}

remove note B

Does this work? Yes. Can guarantee at X and Y that either

(i) safe for me to buy

(ii) other will buy, ok to quit

CS 162 Spring 2003 Lecture 6 7/8

At Y: if noNote A, safe for B to buy (means A hasn’t started yet)

if note A, A is either buying, or waiting for B to quit,

so ok for B to quit

At X: if nonote B, safe to buy

if note B, don’t know. A hangs around. Either:

if B buys, done

if B doesn’t buy, A will.

6.7 Too Much Milk Summary

Solution #3 works, but it’s really unsatisfactory:

1. Really complicated – even for this simple an example, hard to convince

yourself it really works

2. A’s code different than B’s – what if lots of threads? Code would have to be

slightly different for each thread.

3. While A is waiting, it is consuming CPU time (busy-waiting)

There’s a better way.

1. Have hardware provide better (higher-level) primitives than atomic load and

store. Examples in next lecture.

2. Build even higher-level programming abstractions on this new hardware

support. For example, why not use locks as an atomic building block (how

we do this in the next lecture):

Lock::Acquire – wait until lock is free, then grab it

Lock::Release – unlock, waking up a waiter if any

These must be atomic operations – if two threads are waiting for the lock, and

both see it’s free, only one grabs it!

With locks, the too much milk problem becomes really easy!

lock->Acquire();

if (nomilk)

buy milk;

CS 162 Spring 2003 Lecture 6 8/8

lock->Release();

