

CS 162 Spring 2003 Lecture 10 1/6

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 10: Deadlock

10.0 Main Points:
• Definition of deadlock

• Conditions for its occurrence

• Solutions for breaking and avoiding deadlock

Solutions pose a dilemma:

• Simple solutions – inefficient

• Complex solutions – inefficient and unpleasant

10.1 Definitions

10.1.1 Resources

Threads – active

Resources – passive, things needed by thread to do its job

(CPU, disk space, memory)

Two kinds of resources:

• Preemptable – can take it away (CPU)

• Non-preemptable – must leave with thread

(disk space – what would you think if I took space for your files?)

Mutual exclusion – the right to enter a critical section is a kind of resource

CS 162 Spring 2003 Lecture 10 2/6

10.1.2 Starvation vs. Deadlock

Starvation – thread waits indefinitely (for example, because some other threads

are using resource)

Deadlock – circular waiting for resources

Example:

• I have resource A and need resource B to get my job done.

• You have resource B and need resource A to get your job done.

=> Deadlock implies starvation, but not vice versa
• Starvation can end (but doesn’t have to)

• Deadlock can’t end without external intervention.

Deadlock need not be deterministic:

X = 1; y = 1;

Thread A Thread B

x.P();

y.P();

y.v();

x.v();

y.P();

x.P();

x.V();

y.V();

Deadlock won’t always happen with this code, but it might.

CS 162 Spring 2003 Lecture 10 3/6

10.2 Conditions for deadlock

10.2.1 Motivation

Deadlock can happen with any kind of resource.

Deadlocks can occur with multiple resources. Means you can’t decompose the

problem – can’t solve deadlock for each resource independently.

For example:

1. One thread grabs the memory it needs

2. Another grabs disk space

3. Another grabs the tape drive

Each waits for the other to release.

Deadlock can occur whenever there is waiting.

Example: dining lawyers

Each lawyer needs two chopsticks to eat. Each grabs chopstick on the right first.

What if all grab at the same time? Deadlock.

10.2.2 Conditions

Conditions for deadlock – without all of these, can’t have deadlock:

1. Limited access (for example: mutex or bounded buffer)

2. No preemption (if someone has resource, can’t take it away)

3. Multiple independent requests – “wait while holding”

4. Circular chain of requests

CS 162 Spring 2003 Lecture 10 4/6

Can draw graph to see if you have a circular chain:

Thread A

Thread B

XY

waiting for

owned by

owned by

waiting for

 Example of deadlock

10.3 Solutions to Deadlock

10.3.1 Detect deadlock and fix

IF one can preempt resources, then one option is to let deadlocks happen and fix things up

after the fact.

Scan graph

Detect cycles

Fix them // this is the hard part!

a) Shoot thread, force it to give up resources.

This isn’t always possible – for instance, with a mutex, can’t shoot a thread

and leave world in a consistent state.

b) Roll back actions of deadlocked threads (transactions)

Common technique in databases

10.3.2 Preventing deadlock

What if you can’t reclaim a deadlocked resource?

Then you need to prevent deadlocks from ever happening in the first place.

CS 162 Spring 2003 Lecture 10 5/6

Need to get rid of one of the four conditions that allow deadlock to occur.

a) Infinite resources

b) No sharing – totally independent threads.

c) Don’t allow waiting – how phone company avoids deadlock

d) Preempt resources

Example: Can preempt main memory by copying to disk

e) Make all threads request everything they’ll need at beginning.

If you need 2 chopsticks, grab both at same time.

Problem is – predicting future is hard, tend to over-estimate resource needs

(inefficient)

Banker’s algorithm: more efficient than reserving all resources on startup

1. State maximum resource needs in advance

2. Allocate resources dynamically when resource is needed – wait if granting

request would lead to deadlock (request can be granted if some sequential

ordering of threads is deadlock free)

Banker’s algorithm allows the sum of maximum resource needs of all current

threads to be greater than the total resources, as long as there is some way for all

the threads to finish without getting into deadlock.

For example, you can allow a thread to proceed if:

The total available resources – # allocated >= max remaining that might

be needed by any thread.

Example of Banker’s algorithm with dining lawyers: chopsticks in middle of

table.

Deadlock free if when try to grab fork, take it unless it’s the last one, and no one

would have 2.

CS 162 Spring 2003 Lecture 10 6/6

What if k-handed lawyers?

Deadlock free if when try to grab fork: take it unless

• it’s the last one, and no one would have k

• it’s the next to the last, and no one would have k-1,

• ...

f) Make everyone use the same ordering in accessing resources.

For example, all threads must grab semaphores in the same order

(x.P; y.P)

Typically, systems employ a combination of techniques!

10.4 Summary
When multiple threads or processes contend for shared resources then starvation
and deadlock can occur.

If its OK to preempt resources held by a deadlocked process then one can let
deadlocks happen and fix things up after the fact. If deadlocks happen
infrequently then this provides an efficient common case solution in exchange for
a (hopefully) acceptable exception case cost.

If one can’t preempt resources held by a deadlocked process then deadlocks have
to be prevented from happening in the first place. That is, one has to prevent one
or more of the four conditions needed to allow deadlock to occur from holding.

