

CS 162 Spring 2003 Lecture 11 1/10

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 11: CPU Scheduling

11.0 Main Points
• Scheduling policy goals

• Policy options

• Implementation considerations

Earlier, said dispatcher can choose any thread on the ready list to run. But how is

the OS to decide, when it has a choice?

11.1 Scheduling Policy Goals

1. Minimize response time: elapsed time to do an operation (or job)

Response time is what the user sees: elapsed time to

• Echo a keystroke in editor

• Compile a program

• Run a large scientific problem

2. Maximize throughput: operations (or jobs) per second

Two parts to maximizing throughput

a. Minimize overhead (for example, context switching)

b. Efficient use of system resources (not only CPU, but disk, memory, etc.)

3. Fairness: share CPU among users in some equitable way

What does fairness mean?

Minimize average response time? We will argue fairness is a tradeoff against average

response time; can get better average response time by making system less fair.

CS 162 Spring 2003 Lecture 11 2/10

11.2 Assumptions
Bunch of algorithms for CPU scheduling – big area of research in the early 70’s.

These assume:

• One program per user

• One thread per program

• Programs are independent

Clearly, these are unrealistic but they simplify the problem so it can be solved.

Open issue is: what happens if you remove these constraints?

Also assume an execution model consisting of CPU/IO bursts. That is, a program

typically uses the CPU for some period of time, then does I/O, then uses the CPU

again. Thus, for each scheduling decision the question is which job to give the

CPU to for use by its next CPU burst. Note that in a timeslicing system a job may

be forced to give up the CPU before its current CPU burst is finished. Likewise, a

job may give up the CPU before its timeslice is expired.

11.3 Scheduling policies

11.3.1 FIFO

Different names for the same thing:

• FCFS – first come first serve

• FIFO – first in first out

• Run until done

In early systems, FIFO meant, one program kept CPU until it completely finished.

With strict uniprogramming, if have to wait for I/O, keep processor.

Later, FIFO just means, keep CPU until thread blocks (this is what I’ll assume).

FIFO Pros & Cons:

 + simple

 – short jobs get stuck behind long jobs

CS 162 Spring 2003 Lecture 11 3/10

11.3.2 Round Robin

Solution? Add timer, and preempt CPU from long-running jobs. Just about every

real operating system does something of this flavor.

Round-robin: after time slice, move thread to back of the queue

In some sense, it’s fair – each job gets equal shot at the CPU.

11.3.2.1 How do you choose time slice?

1) What if too big?

Response time suffers

2) What if too small?

Throughput suffers. Spend all your time context switching, none getting real

work done.

In practice, need to balance these two. Typical time slice today is between 10—

100 milliseconds; typical timeslice overhead is 0.1 – 1 millisecond, so roughly

1% overhead due to time-slicing.

11.3.2.2 Comparison between FIFO and Round Robin

Assuming zero-cost time slice, is RR always better than FIFO?

For example: 10 jobs, each take 100 seconds of CPU time.

Round Robin time slice of 1 second.

 All jobs start at the same time:

CS 162 Spring 2003 Lecture 11 4/10

Job completion times

Job # FIFO Round Robin

 1 100 991

 2 200 992

 9 900 999

10 1000 1000

Round robin runs one second from each job, before going back to the first. So

each job accumulates 99 seconds of CPU time before any finish.

Both round robin and FIFO finish at the same time, but average response time is

much worse under RR than under FIFO.

Thus, round robin Pros & Cons:

 + better for short jobs

 – poor when jobs are same length

11.3.3 SJF/SRTF

SJF: Shortest Job First (sometimes called STCF - Shortest Time to Completion

Firs)t. Run whatever job has the least amount of stuff to do.

SRTF: Shortest Remaining Time First (sometimes called STRCF: Shortest

Remaining Time to Completion First). Preemptive version of SJF – if job arrives

that has a shorter time to completion than the remaining time on the current job,

immediately preempt CPU to give to new job.

These can be applied either to a whole program or to the current CPU burst of

each program.

Idea is get short jobs out of the system. This has a big effect on short jobs, but

only a small effect on long jobs. Result is better average response time.

CS 162 Spring 2003 Lecture 11 5/10

In fact, SJF/SRTF are the best you can possibly do, at minimizing average

response time (SJF among non-preemptive policies, SRTF among preemptive

policies). Can prove they’re optimal. Since SRTF is always at least as good as

SJF, focus on SRTF.

11.3.3.1 Comparison of SRTF with FIFO and Round Robin

What if all jobs are the same length? SRTF becomes the same as FIFO (in other

words, FIFO is as good as you can do if all jobs are the same length).

What if jobs have varying length? SRTF (and round robin): short jobs don’t get

stuck behind long jobs.

Example to illustrate the benefits of SRTF:

Three jobs:

A, B: both CPU bound, run for week

C: I/O bound, loop

1 ms of CPU

10 ms of disk I/O

By itself, C uses 90% of the disk; by itself, A or B could use 100% of the CPU.

What happens if we try to share system between A, B, and C?

With FIFO:

Once A or B get in, keep CPU for two weeks

With Round Robin (100 ms time slice):

Only get 5% disk utilization

With Round Robin (1 ms time slice):

Get nearly 90% disk utilization – almost as good as C alone.

CS 162 Spring 2003 Lecture 11 6/10

But we haven’t slowed A or B by all that much: they still get 90% of the CPU.

(Lots of wakeups, however!)

With SRTF: no needless preemptions (run C as soon as possible, run either A or

B to completion)

C A B
C

A

C

RR, 100 ms time slice

RR, 1 ms time slice

ABAB

..

CA

C's I/O

C A C A C A

C's I/O

C's I/O

SRCTF
Effect of RR time quanta and SRTF on I/O bound jobs

A downside to SRTF is that it can lead to starvation. Lots of short jobs can keep

long jobs from making any progress.

SRTF Pros& Cons:

+ Optimal (average response time)

– Hard to predict the future

– Unfair

CS 162 Spring 2003 Lecture 11 7/10

11.3.3.2 Knowledge of future

Problem: SJF/SRTF require knowledge of the future.

How do you know how long program will run for, or how long its next CPU burst

will be?

Some systems ask the user: when you submit a job like a compile, have to say

how long it will take.

To stop cheating, if your job takes more than what you said, system kills your job.

Start all over. Like with the Banker’s algorithm – hard to predict resource usage

in advance.

Instead, can’t really know how long things will take, but can use SRTF as a

yardstick, for measuring other policies. Optimal, so can’t do any better than that!

11.3.4 Multilevel feedback

Central idea in computer science (occurs in lots of places): use past to predict

future. If program was I/O bound in past, likely to be in future.

If computer behavior were random, induction wouldn’t help. Or if past behavior

was opposite of current behavior.

But program behavior is regular, most of the time. How do we exploit this? If

past behavior predicts future behavior, then favor jobs that have been at CPU least

amount of time, to approximate SRTF!

Adaptive policies: change policy based on past behavior. Used in CPU

scheduling, in virtual memory, in file systems, etc.

Multi-level feedback queues (first used in CTSS, example of an adaptive policy

for CPU scheduling): multiple queues, each with different priority. OS does

round robin at each priority level – run highest priority jobs first; once those

finish, run next highest priority, etc. Round robin time slice increases

exponentially at lower priorities.

CS 162 Spring 2003 Lecture 11 8/10

Priority

1

2

3

4

Time Slice

1

2

4

8

Multilevel feedback queues

Adjust each job’s priority as follows (details vary):

1. Job starts in highest priority queue.

2. If timeout expires, drop one level

3. If timeout doesn’t expire, push up one level (or back to top)

Result approximates SRTF: CPU bound jobs drop like a rock, while short-running

I/O bound jobs stay near top.

Multilevel feedback queues (like SRTF) are still unfair: long running jobs may

never get the CPU.

Countermeasure: user action that can foil intent of the OS designer. For

multilevel feedback, countermeasure would be to put in meaningless I/O to keep

job’s priority high. Of course, if everyone did this, wouldn’t work!

11.3.5 Fairness

What should we do about fairness? Since SRTF is optimal and unfair, any

increase in fairness (for instance by giving long jobs a fraction of the CPU, even

when there are shorter jobs to run) will have to hurt average response time.

How do we implement fairness?

CS 162 Spring 2003 Lecture 11 9/10

Could give each queue a fraction of the CPU.

But this isn’t always fair. What if there’s one long-running job, and 100

short-running ones?

Could adjust priorities: increase priority of jobs, as they don’t get service. This is

what’s done in UNIX.

Problem is that this is ad hoc – what rate should you increase priorities?

And, as system gets overloaded, no job gets CPU time, so everyone

increases in priority. The result is that interactive jobs suffer – both short

and long jobs have high priority!

Instead, use lottery scheduling: give every job some number of lottery tickets,

and on each time slice, randomly pick a winning ticket. On average, CPU time is

proportional to # of tickets given to each job.

How do you assign tickets? To approximate SRTF, short running jobs get more,

long running jobs get fewer. To avoid starvation, every job gets at least one ticket

(so everyone makes progress).

Advantage over strict priority scheduling: behaves gracefully as load changes.

Adding or deleting a job affects all jobs proportionately, independent of how

many tickets each job has. For example, if short jobs get 10 tickets, and long jobs

get 1 each, then:

short jobs /

long jobs

% of CPU each short

job gets

% of CPU each long

job gets

1/1 91% 9%

0/2 NA 50%

2/0 50% NA

10/1 10% 1%

1/10 50% 5%

11.4 A Different Point-of-View
When do the details of scheduling policy and fairness really matter?

CS 162 Spring 2003 Lecture 11 10/10

When there aren’t enough resources to go around.

Question: When should you simply buy a faster computer?

One approach: Buy when it will pay for itself in improved response time

(assuming you’re paying for worse response time in reduced productivity,

customer angst, ...)

Might think that you should buy a faster X when X is utilized 100% of the time.

But for most systems, response time goes to infinity, as utilization goes to 100%.

How does response time vary with load?

Response
Time

Load
An interesting implication of this curve:

Most scheduling algorithms will work just fine as long as you stay in the

“linear” portion of the load curve, whereas life gets miserable no matter

what you try to do when you’re in the “steep” part of the load curve.

Argues for buying a faster X when you reach the “knee” of the load curve.

