

CS 162 Spring 2003 Lecture 13 1/15

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 13: Address Translation

13.0 Main Points

Options for managing memory:

• Paging

• Segmentation

• Multi-level translation

• Paged page tables

• Inverted page tables

Comparison among options

CS 162 Spring 2003 Lecture 13 2/15

13.1 Hardware Translation Overview

CPU

Translation
 Box
 (MMU)

Physical
Memory

Virtual
Address

Physical
Address

Data read or write
(untranslated)

Think of memory in two ways:

• View from the CPU – what program sees, virtual memory

• View from memory – physical memory

Translation implemented in hardware; controlled in software. There are many

kinds of hardware translation schemes. Start with the simplest!

CS 162 Spring 2003 Lecture 13 3/15

13.2 Base and Bounds

Base and bounds: Each program loaded into contiguous regions of physical

memory, but with protection between programs. First built in the Cray-1.

virtual address

+

>

base

bounds

physical address

error

Hardware Implementation of Base and Bounds Translation

Program has illusion it is running on its own dedicated machine, with memory

starting at 0 and going up to size = bounds. Like linker-loader, program gets

contiguous region of memory. But unlike linker-loader, protection: program can

only touch locations in physical memory between base and base + bounds.

CS 162 Spring 2003 Lecture 13 4/15

code

data

stack

virtual memory

0

bound

physical memory

6250

6250 + bound

Virtual and Physical Memory Views in Base and Bounds System

Provides level of indirection: OS can move bits around behind the program’s

back, for instance, if program needs to grow beyond its bounds, or if need to

coalesce fragments of memory. Stop program, copy bits, change base and bounds

registers, restart.

Only the OS gets to change the base and bounds! Clearly, user program can’t, or

else lose protection.

With base&bounds system, what gets saved/restored on a context switch?

CS 162 Spring 2003 Lecture 13 5/15

Hardware cost:

• 2 registers

• Adder

• Comparator

Plus, slows down hardware because need to take time to do add/compare on every

memory reference.

Base and bounds, Pros:

+ Simple, fast

Cons:

1. Hard to share between programs

For example, suppose two copies of “vi”

• Want to share code

• Want data and stack to be different

Can’t do this with base and bounds!

2. Complex memory allocation

First fit, best fit, buddy system. Particularly bad if want address space

to grow dynamically (e.g., the heap).

In worst case, have to shuffle large chunks of memory to fit new

program.

3. Doesn’t allow heap, stack to grow dynamically – want to put these as

far apart as possible in virtual memory, so that they can grow to

whatever size is needed.

13.3 Segmentation

A segment is a region of logically contiguous memory.

Idea is to generalize base and bounds, by allowing a table of base&bound pairs.

CS 162 Spring 2003 Lecture 13 6/15

virtual address

+

>

physical address

error

offsetvirt seg #

seg ptr seg size
phys

For example, what does it look like with this segment table, in virtual memory

and physical memory? Assume a14 bit addresses divided up as:

2 bit segment ID, and a 12 bit segment offset.

Virtual segment # Physical segment

start

Segment size

0 code 0x4000 0x700

1 data 0 0x500

2 - 0 0

3 stack 0x2000 0x1000

CS 162 Spring 2003 Lecture 13 7/15

0

6ff

1000

14ff

3000

3fff

0

4ff

2000

2fff

4000

46ff

virtual memory physical memory

This should seem a bit strange: the virtual address space has gaps in it! Each

segment gets mapped to contiguous locations in physical memory, but may be

gaps between segments.

But a correct program will never address gaps; if it does, trap to kernel and then

core dump. Minor exception: stack, heap can grow. In UNIX, sbrk() increases

size of heap segment. For stack, just take fault, system automatically increases

size of stack.

Detail: Need protection mode in segmentation table. For example, code segment

would be read-only (only execution and loads are allowed). Data and stack

segment would be read-write (stores allowed).

What must be saved/restored on context switch? Typically, segment table stored

in CPU, not in memory, because it’s small.

CS 162 Spring 2003 Lecture 13 8/15

Example: What happens with the above segment table, with the following as

virtual memory contents? Code does:

strlen(x);

Virtual memory

Main: 240 store 1108, r2

244 store pc +8, r31

248 jump 360

24c …

...

Strlen: 360 loadbyte (r2), r3

...

420 jump (r31)

...

x: 1108 a b c \0

...

Initially, pc = 240.

Physical Memory

x: 108 666

...

Main: 4240 store 1108, r2

4244 store pc +8, r31

4248 jump 360

424c …

...

Strlen: 4360 loadbyte (r2), r3

...

420 jump (r31)

Segmentation Pros & Cons:

+ Efficient for sparse address spaces

+ Easy to share whole segments (for example, code segment)

– Complex memory allocation

CS 162 Spring 2003 Lecture 13 9/15

Still need first fit, best fit, etc., and re-shuffling to coalesce free fragments, if no

single free space is big enough for a new segment.

How do we make memory allocation simple and easy?

13.4 Paging

Allocate physical memory in terms of fixed size chunks of memory, or pages.

Simpler, because allows use of a bitmap. What’s a bitmap?

001111100000001100

Each bit represents one page of physical memory – 1 means allocated, 0 means

unallocated. Lots simpler than base&bounds or segmentation

Operating system controls mapping: any page of virtual memory can go anywhere

in physical memory.

virtual address

physical address

offset
phys
page #

offset
virtual
page #

page table

page table ptr

page table size>

error

Each address space has its own page table, in physical memory. Hardware needs

two special registers – pointer to physical location of page table, and page table

size.

CS 162 Spring 2003 Lecture 13 10/15

Example: suppose page size is 4 bytes.

a
b
c
d

e
f
g
h

i
j
k
l

3

1

virtual memory physical memory

i
j
k
l

e
f
g
h

0

4

8

0xC

0x10

4

a
b
c
d

page table

Where is virtual address 6? 9?

Questions:

1. What must be saved and restored on a context switch?

2. What if page size is very small? For example, VAX had a page size of 512

bytes.

3. What if page size is really big? Why not use an infinite page size?

Fragmentation: wasted space

• External – free gaps between allocated chunks

• Internal – free gaps because don’t need all of allocated chunk

With segmentation need to re-shuffle segments to avoid external

fragmentation. Paging suffers from internal fragmentation.

CS 162 Spring 2003 Lecture 13 11/15

4. What if address space is sparse? For example: on UNIX, code starts at 0,

stack starts at 2^31 – 1. With 1KB pages, 2 million page table entries!

Paging Pros&Cons:

+ simple memory allocation

+ easy to share

– big page tables if sparse address space

Is there a solution that allows simple memory allocation, easy to share memory,

and is efficient for sparse address spaces?

How about combining paging and segmentation?

13.5 Multi-level translation

Multi-level translation. Use tree of tables. Lowest level is page table, so that

physical memory can be allocated using a bitmap. Higher levels are typically

segmented.

For example, here’s a picture of a 2-level translation scheme:

CS 162 Spring 2003 Lecture 13 12/15

virtual address

>

physical address

error

offset virt seg #

page table
ptr table size

virt page #

segment table

page table

phys page # offset

Just like recursion – could have any number of levels. Most architectures today

do this.

Questions:

1. What must be saved/restored on context switch?

2. How do we share memory? Can share entire segment, or a single page.

Example: Suppose we have 24 bit virtual addresses partitioned as 4 bits

of segment #, 8 bits of virtual page #, and 12 bits of offset.

Segment Table

Page table pointer Page table size

0x2000 0x14

– –

0x1000 0xD

– –

CS 162 Spring 2003 Lecture 13 13/15

0x1000

0x2000

 (the above are portions of the page tables for the segments)

What do the following addresses translate to?

0x002070?

0x201016 ?

0x14c684 ?

0x210014 ?

Multilevel translation:

+ Only need to allocate as many page table entries as we need.

In other words, sparse address spaces are easy.

+ Easy memory allocation

+ Share at segment or page level (need additional reference counting)

– Pointer per page (typically 4KB - 16KB pages today)

– Page tables need to be contiguous

– Two (or more, if > 2 levels) lookups per memory reference

13.6 Paged page tables

A different solution to sparse address spaces is to allow the page tables to be

paged – only need to allocate physical memory for page table entries you really

use. Top level page table is in physical memory, all lower levels of hierarchy are

in virtual memory (and therefore can be allocated in fixed size page frames in

physical memory).

Physical Memory

0x6

0xb

0x4

…

0x13

0x2a

0x3

…

CS 162 Spring 2003 Lecture 13 14/15

virtual address of page tbl entry

 virtual address

physical address

offset

phys address of page
table entry

offset virtual page #

page table ptr +

virtual page #

page table ptr

ptr to page table of
page tables

phys page # offset

phys page # offset

Memory
Lookup

Memory
Lookup

Data

Memory
Lookup

page table of page
tables

This means that potentially, each memory reference involves three memory

references (one for the system page table, one for the user page table, and one for

the real data).

How do we reduce the overhead of translation?

Caching in Translation Lookaside Buffers (TLB’s).

Relative to multilevel translation, paged page tables are more efficient if using a

TLB. If virtual address of page table entry is in TLB, can skip one or more levels

of translation.

CS 162 Spring 2003 Lecture 13 15/15

13.7 Inverted page tables

What is an efficient data structure for doing lookups? Hash table. Why not use a

hash table to translate from virtual address to a physical address.

This is called an inverted page table for historical reasons.

Take virtual page #, run hash function on it, index into hash table to find page

table entry with physical page frame #.

Independent of size of address space,

Advantages:

+ O(1) lookup to do translation

+ Requires page table space proportional to how many pages are actually

being used, not proportional to size of address space – with 64 bit

address spaces, this is a big win!

– Overhead of managing hash chains, etc.

