

CS 162 Spring 2003 Lecture 14 1/10

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 14: Caching and TLBs

14.0 Main Points:
• Cache concept, in general and as applied to translation

• Ways of organizing caches – associativity

• Problems with caching

14.1 Cache concept

Cache: copy that can be accessed more quickly than original.

Idea is: make frequent case efficient, and then the infrequent path doesn’t matter

as much. Caching is a fundamental concept used in lots of places in computer

systems. It underlies many of the techniques that are used today to make

computers go fast: can cache translations, memory locations, pages, file blocks,

file names, network routes, authorizations for security systems, etc.

14.2 Caching applied to address translation

Address translation is on the critical path for every instruction --- can’t afford to

always do a memory look up (or even worse, an I/O!) to find a page table entry.

Often reference same page repeatedly, why go through entire translation each

time?

CS 162 Spring 2003 Lecture 14 2/10

CPU

Translation
 (MMU)

Physical
Memory

Virtual
Address

Physical
Address

Data read or write
(untranslated)

remember?
yes
no

remember!

TLB

Translation Buffer, Translation Lookaside Buffer: hardware table of

frequently used translations, to avoid having to go through page table lookup in

common case. Typically, on chip, so access time of 5 – 10ns, instead of several

hundred of ns for main memory.

TLB for example from previous lecture (simple paging)

Virtual page # Physical page # Control bits

2 1 Valid, RW

– – Invalid

0 4 Valid, RW

14.2.1 How do we tell if needed translation is in TLB?

1. Search table in sequential order

CS 162 Spring 2003 Lecture 14 3/10

2. Direct mapped: restrict each virtual page to use specific slot in TLB

direct mapped

virtual page #

hash

=?

no

full translation
replace TLB entry

virtual
page #

phys
page #

yes

use
TLB
entry

As a (bad, as we will see shortly) example, could use the lower bits of

virtual page number to index TLB. Compare against the upper bits of

virtual page number to check for match.

Note: Do we need to store the entire virtual page number in the TLB? No, as

an enhancement we could get away with storing only the upper bits.

Consider a 256 entry TLB, and the following reference stream of virtual page

numbers in hex (note these are just page numbers, not entire virtual

addresses):

0x621

0x2145

0x621

0x2145

...

0x321

0x2145

0x321

0x621

What happens to the TLB?

CS 162 Spring 2003 Lecture 14 4/10

What if two pages conflict for the same TLB slot? Ex: program counter and

stack.

Thrashing: cache contents tossed out even if still needed

One approach: pick hash function to minimize conflicts

What if use low order bits as index into TLB?

What if use high order bits as index into TLB?

Thus, use selection of high order and low order bits as index.

3. Set associativity: arrange TLB (or cache) as N separate banks. Do

simultaneous lookup in each bank. In this case, called “N-way set associative

cache”.

virtual page #

hash

=?

virtual
page #

phys
page #

virtual
page #

phys
page #

=?

if either match, use TLB entry, otherwise,
translate and replace one of the entries.

Two-way set associative

CS 162 Spring 2003 Lecture 14 5/10

More set associativity means less chance of thrashing. Translations can be

stored, replaced in either bank.

CS 162 Spring 2003 Lecture 14 6/10

4. Fully associative: translation can be stored anywhere in TLB, so check all

entries in the TLB in parallel.

virtual page #

if any match, use that TLB entry, otherwise,
translate and replace one of the entries.

=? =? =? =?

Fully associative TLB

One element per bank, and one comparator per bank. So parallelism is

obtained through the addition of comparator hardware.

Same set of options, whether you are building TLB or any kind of cache.

Typically, TLB’s are small and fully associative. Hardware caches are larger, and

direct mapped or set associative to a small degree.

14.2.2 How do we choose which item to replace?

For direct mapped, never any choice as to which item to replace. But for set

associative or fully associative cache, have a choice. What should we do?

Replace least recently used? Random? Most recently used? Defer until next

lecture topic. In hardware, often choose item to replace randomly, because it’s

simple and fast. In software (for example, for page replacement), typically do

something more sophisticated. Tradeoff: spend CPU cycles to try to improve

cache hit rate.

CS 162 Spring 2003 Lecture 14 7/10

14.2.3 Consistency between TLB and page tables

What happens on context switch?

Have to invalidate entire TLB contents. When new program starts running, will

bring in new translations.

Alternatively, include Process ID tag in TLB comparator.

Have to keep TLB consistent with whatever the full translation would

give.

What if translation tables change? For example, to move page from memory to

disk, or vice versa.

Have to invalidate TLB entry.

14.3 Relationship between TLB and hardware memory caches

CPU

Translation
 (MMU)

Physical
Memory

Virtual
Address

Physical
Address

Data read or write
(untranslated)

remember?
yes
no

remember!

TLB

Can put a cache of memory values anywhere in this process.

If between translation box and memory, called a “physically addressed cache.”

Could also put a cache between CPU and translation box: “virtually addressed

cache.”

CS 162 Spring 2003 Lecture 14 8/10

CPU

virtually
addressed
cache

vaddr data

virt
page#

phys
page #

TLB

paddr data

Xoff A

X Y

Yoff A

if no
match

if no
match

segment and page
table lookup

if match

if
match

if no
match

Yoff A

main
memory

if page fault

disk

A

physically
addressed
cache

Virtual memory is a kind of caching: we’re going to talk about using the contents

of main memory as a cache for disk.

What about writes? What if CPU modifies a location?

Two options:

• Write-through: update immediately sent through to next level in

memory hierarchy

• Write-back: (delayed write-through) update kept until item is

replaced from cache, and then sent to next level.

Since write-back is faster, memory caches typically use write-back; file systems,

which need to worry about whether the data being written will survive a machine

crash, tend to use write-through.

CS 162 Spring 2003 Lecture 14 9/10

14.4 Memory Hierarchy

Two principles:

1. The smaller amount of memory needed, the faster that memory can be

accessed.

2. The larger amount of memory, the cheaper per byte.

Thus, put frequently accessed stuff in small, fast, expensive memory; use large,

slow, cheap memory for everything else.

 Latency Size Cost

Registers 2.5ns 32-128 bytes on chip

On-chip cache 5ns 32KB on chip

Off-chip cache 20ns 512KB $2000/MB

Main memory 40ns 512MB $4/MB

Disk 10ms (10M ns) 100 GB $0.001MB

Robotic tape 10s (10B ns) 100 TB Factor of 3-5 less

than disk.

Use caching at each level, to provide illusion of a terabyte, with register access

times.

Works because programs aren’t random. Exploit locality: that computers behave

in future like they have in the past.

Temporal locality: will reference same locations as accessed in the recent past

Spatial locality: will reference locations near those accessed in the recent past

14.5 Generic Issues in Caching

Cache hit: item is in the cache

Cache miss: item is not in the cache, so have to do full operation

Effective access time =

P(hit) * cost of hit + P(miss) * cost of miss

CS 162 Spring 2003 Lecture 14 10/10

Can divide cache misses into one of four categories:

1. Compulsory: first reference to data will always miss, even if you assume

infinite cache

2. Capacity: non-compulsory misses due to limited size cache, assuming fully

associative and optimal replacement policy

3. Conflict: non-compulsory, non-capacity misses, due to limited associativity,

assuming optimal replacement policy

4. Policy: misses due to non-optimal replacement policy

Questions:

1. How do you find whether item is in the cache (whether there is a cache hit)?

2. If it is not in cache (cache miss), how do you choose what to replace from

cache to make room? (Replacement policy)

3. Consistency – how do you keep cache copy consistent with real version?

14.6 When does caching break down?

Whenever programs don’t exhibit enough spatial or temporal locality – what if

loop through array that doesn’t fit in the cache?

Example: When MIPS was first introduced: 64 item TLB, 4 KB page size. Plus,

1K x 1K x 4 byte video RAM. Video RAM was mapped into virtual memory, to

allow graphics programs to write directly to display. What happens?

