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CS 162 Operating Systems and Systems Programming 
Professor: Anthony D. Joseph 

Spring 2003 
 
Lecture 21: Network Protocols (and 2 Phase Commit) 

21.0 Main Point 
Protocol: agreement between two parties as to how information is to be transmitted. 
 
Example: system calls are the protocol between the operating system and applications 
 
Another example: Alphabet soup.  Will explain all these acronyms as we go along. 

RPC

UDP

IP

TCP

NFS e-mailWWW ssh

Ethernet ATM packet radio
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Physical Reality: packets Abstraction: messages 

Limited size Arbitrary size 

Unordered (sometimes) Ordered 

Unreliable Reliable 

Machine-to-machine Process-to-process 

Only on local area net Routed anywhere 

Asynchronous Synchronous 

Insecure Secure 

 
Illustrates layering – build services on simpler services  
 

21.1 Arbitrary size messages 
Arbitrary size messages on top of limited size ones 
 
Send N little messages – split up message into fixed size packets 

abcdefgh -> 1 of 3/abc   2 of 3/def   3 of 3/gh 
 
Checksum can be computed on each fragment, or on whole message 
 

21.2 IP – Internet Protocol 
Deliver messages unreliably from one machine in internet to another. 
 
a. Routes packets from one machine through internet to another 
 
b. Some intermediate links may have limited size. 
      Fragments on demand, re-assembles at destination 
 
c. Unreliable, unordered, machine->machine 
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21.3 Process-process communication 
User process communication on top of machine to machine communication 
 
Mailbox (or “port”) address – include in each message, the destination mailbox.  Allows 
you to direct each message to correct process 
 
 

21.4 UDP – Unreliable Data Protocol 
Unreliable, unordered, user-to-user communication 
 
Built on top of IP 
 

21.5 Ordered messages  
Ordered messages on top of unordered ones 
 
IP can re-order packets – send A, B arrives: B, A 
 
How do we fix this?  Assign sequence numbers to successive packets –  

0, 1, 2, 3, ...   
If arrive out of order, don’t deliver #3 to user application until get #2. 
 
Sequence numbers specific to a connection – for example, the machine-machine (or 
mailbox-mailbox) pair.  This means put “source” as well as “destination” in each header. 
 

21.6 Performance considerations 
 
Overhead – CPU time to put packet on wire 
Latency – how long before first bit of packet arrives at receiver 
Throughput – maximum bytes per second 
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21.6.1 Example 

How long to send 4KB packet over various networks?  Typical overhead to send a 
packet: 1 ms. 
 
Ethernet (10 – 1000Mb/s) within Soda: 

Latency: speed of light = 1 ns / foot, implies < 1 microsecond. 
 

Throughput delay: packet doesn’t arrive until all its bits get there!  So 4KB/10 
Mb/s = 3 milliseconds (roughly as long as a disk!) 

 
ATM (155 Mb/s) within Soda: 

Latency same. 
Throughput delay: 4KB/ 155 Mb/s = 200 microseconds. 

 
ATM cross-country?   

Latency: 3000 miles * 5000 ft/mile => 15 milliseconds. 
Throughput delay: same as above. 

 
How many bits are in transit at the same time? 

15 ms * 155 Mb/s => 280 KB 
 
 
Key to good performance: in local area, minimize overhead, improve bandwidth.  In 
wide area, keep pipeline full. 
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21.7 Reliable message delivery 
Reliable message delivery on top of unreliable delivery 
 
All of these networks can garble, drop messages. 
 
1. Physical media – if transmit close to maximum rate, get more throughput, even if 

some messages get lost 
2. Congestion – what if no place to put incoming message (no buffer space)? 

• In point-to-point network, at each switch  
• What if two hosts try to use same link? 
• In any network, at destination  
• What if sender sends faster than receiver can process? 

 
So what can we do? 

See lecture from the beginning of the term on how to implement streams 
between cooperating processes. 

 
1. Detect garbling at receiver via checksum, discard if incorrect 
2. Receiver ack’s if received properly 
3. Timeout at sender.  If no ack, retransmit 

 
Some questions: 
 
If the sender doesn’t get an ack, does that mean the receiver didn’t get the original 
message? 

No. 
What if ack gets dropped?  Or if message gets delayed. 

Sender doesn’t get ack; retransmits.  Receiver gets message twice, ack’s each. 
 
Solution: put sequence number in message to identify re-transmitted packets.  Receiver 
checks for duplicate sequence #’s.  If so, discards. 
 
1. Sender must keep copy of every message that has not been ack’ed yet (easy) 
2. Receiver must keep track of every message that could be a duplicate (hard!  How 

does receiver know when it’s ok to forget about received messages?) 
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Several approaches to maintaining state at sender/receiver: 
a. Alternating bit protocol.  One bit sequence number.  Send one message at a time; 

don’t send next message until ack received.  Sender only keeps copy of last 
message; receiver keeps track of sequence # of last message received. 

 

A B

msg, #0

ack, #0

msg, #1

ack, #1

msg, #0

ack, #0

 
 
 
 

Pros & cons: 
+ Simple 
+ Small overhead 
– Poor performance 

 
b. Window-based protocol (TCP). Send up to N messages at a time, without waiting 

for ack. 
 

“Window” reflects storage at receiver – sender shouldn’t overrun receiver’s buffer 
space. 
 
Each message has sequence number.  Receiver can say, “I’ve ack’ed up to 
message #X -> any message below X is a duplicate. 
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A B

msg, #0

ack, #0

 
 

What if message gets garbled/dropped?  Receiver will get messages out of order! 
• Discard any messages that arrive out of order?   

• Simple, worse performance 
• Keep copy until sender fills in the missing piece?  

• Reduces # of retransmits, more complex 
 

What if ack gets dropped?  Timeout and resend just the un-acknowledged 
message. 

 

21.8 TCP: transmission control protocol 
Reliable byte stream between two processes on different machines over Internet (read, 
write, flush). 
 
Fragments byte stream into packets, hands packets to IP. 
   
Uses window-based protocol (to minimize state at sender and receiver): send up to N 
messages at a time, without waiting for ack. 
 
“Window” reflects storage at receiver – sender shouldn’t overrun receiver’s buffer 
space. 
 
Sender has three regions: sent and ack’ed, sent and not ack’ed, not yet sent 



 

CS 162 Spring 2003 Lecture 21  8/12 

 
Receiver has three regions: received and ack’ed (given to application), received and 
buffered, not yet received (or received and discarded because out of order) 

Sender messages

Receiver messages

sent, 
acked

sent, not 
acked

not yet 
sent

received, 
given to 
app

received, 
buffered

not yet 
received

Sequence numbers

 
 
Each ack says: “got all messages up to #”.  What happens if ack is delayed, arrives out 
of order?  OK in this scheme.  Just discard. 
 

21.9 Arbitrary Size Messages (revisited) 
Face similar issues as in TCP when building big messages on small ones, when 
messages can get dropped. 
 
 
1. Ack each fragment?  Lots of acks 
2. One ack for entire big message?  Re-transmit all fragments, even if only one gets 

dropped 
3. “Blast protocol” – send one ack, tells sender which pieces were missing.  Selective 

retransmit. 
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21.10 Initialization 
How do you know which sequence # to start with?  When machine boots, ok to start 
with #0?   
 
No.  Could send two separate messages with the same serial #! 
 
Two solutions: 
1. Time to live: each TCP packet has a deadline.  If not delivered in X seconds, then 

dropped.  Thus, can re-use sequence numbers if wait for all packets in flight to be 
delivered or to expire. 

2. Epoch # – uniquely identifies which set of sequence numbers are being used.  Put in 
every message, epoch # incremented on crash and/or when run out of sequence 
#’s, and stored on disk. 

 

21.11 Congestion 
How long should timeout be for re-sending messages? 

Too long?  Wastes time if message is dropped. 
Too short?  Retransmit even though ack will arrive shortly. 

 
Stability problem: more congestion -> ack is delayed -> unnecessary timeout -> more 
traffic -> more congestion 
 
TCP solution:  “slow start”.  Originally, window size = buffer space on remote end.  
Now, window size = control on how much to add to congestion.  
 
Start sending slowly.  If no timeout, slowly increase window size (throughput).  If a 
timeout occurs, it means there’s congestion, so cut window size (throughput) in half. 
 

21.12 General’s Paradox  
Can I use messages and retries over an unreliable network to synchronize two machines 
so that they are guaranteed to do some operation at the same time?   
 
Remarkably, no, even if all messages get through. 
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General’s paradox:  two generals, on separate mountains.  Can only communicate via 
messengers; the messengers can be captured. 
 
Need to coordinate the attack; if they attack at different times, then they all die.  If they 
attack at the same time, they win. 
 

A B

11 am ok?

ok, 11's good for me.

so, 11 it is?

........

yeah, but what if you 
don't get this ack?

 
Even if all messages are delivered, can’t coordinate!   Can’t simultaneously get two 
generals or two machines to agree to do something at the same time. 
 
No solution to this – one of the few things in CS that’s just impossible. 
 

21.13 Two phase commit 
Since we can’t solve the General’s Paradox (i.e., simultaneous action), let’s solve a 
related problem. 
Abstraction: distributed transaction – two machines agree to do something, or not do it, 
atomically (but not necessarily at exactly the same time). 
 
Two phase commit protocol does this.  Use a persistent, stable log on each machine to 
keep track of whether commit has happened.  If a machine crashes, when it wakes up it 
first checks its log to see what state the world was in at the time of the crash. 
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First phase, ask if each can commit – for instance, transfer of funds from one bank to 
another.   
 

A writes, “Begin transaction” to log 
A -> B: OK to transfer funds to me? 

 
Not enough cash: 

B-> A: transaction aborted 
A writes “Abort” to log 

 
Enough cash: 

1. B: Write new X account balance to log 
2. B->A: OK, I can commit 

 
Second phase, A can decide for both, whether they will commit. 
 
3. A: Write new Y account balance to log 
4. Write commit to log 
5. Send message to B that commit occurred 
6. Write “Got commit” to log 
 
What if: 

• B crashes at 1?  Wakes up, does nothing.  A will timeout, abort transaction, 
retry. 

• A crashes at 3?  Wakes up, sees transaction in progress. What transaction, 
sends message to B, abort. 

• B crashes at 3?  B will come back up, look at log, so that when A sends it 
“Commit” message, it will say, oh, ok, commit. 

 
One problem with 2PC is “Blocking”:  That is, a site gets stuck in a situation where it 
cannot continue until some other site (usually the coordinator) recovers.  How could this 
happen? 

• Participant site B writes a “prepared to commit” record to its log, sends a “yes” 
vote to the coordinator (site A) and crashes. 

• Site A crashes 
• Site B wakes up, checks its log and realizes that it had voted “yes” on the 

update.  It sends a message to site A, asking what happened.  At this point, B 
cannot change its mind and decide to abort, because the update may have 
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committed while it was crashed, thus it is blocked. (note, B may be able to 
learn the fate of the update by asking some of the other participants.) 

 
Blocking is problematic because a blocked site must hold resources (for example, 
locks on updated items, pages pinned in memory, etc.) until it learns the fate of the 
update. 
 
Question: Can blocking be avoided?  Answer: yes!  If you are willing to impose 
some constraints on the way that voting is done, an algorithm called “Three Phase 
Commit” can solve the problem.  3PC is not generally used in practice, however, 
due to performance reasons and the low instance of blocking in practice. 


