

CS 162 Spring 2003 Lecture 24 1/19

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2003

Lecture 24: Protection and Security in Distributed
Systems

24.0 Main Point
Why you shouldn’t ever trust a computer system

Goal: Prevent misuse of computers

24.1 Definitions
Types of misuse:

1. Accidental

2. Intentional

Protection is to prevent either accidental or intentional misuse. Security is to

prevent intentional misuse.

Two parts to this:

• Conceptual understanding of how to make systems more secure

• Some examples, to illustrate why providing security is really hard in

practice.

CS 162 Spring 2003 Lecture 24 2/19

Three pieces to security:

1. Authentication – who user is

2. Authorization – who is allowed to do what

3. Enforcement – make sure people do only what they are supposed to do

Loophole in any of these, problem: For example:

1. Log in as superuser and you’ve circumvented authentication

2. Log in as self and you can do anything you want to your own resources. What

if you run some program that decides to erase all your files?

3. Can you trust software to correctly enforce decisions about 1 + 2

24.2 Authentication
Common approach: passwords. Shared secret between two parties. Since only I

know password, machine can assume it is me.

Problem 1: system must keep copy of secret, to check against passwords. What

if malicious user gains access to this list of passwords?

Encryption – transformation that is difficult to reverse without the right

key

For example: UNIX /etc/passwd file

passwd -> one way transform (hash) -> encrypted passwd

System stores only encrypted version, so OK even if someone reads the file!

When you type in your password, system compares encrypted versions.

Problem 2: Passwords must be long and obscure

Paradox: Short passwords are easy to crack

Long ones, people write down!

Technology means we have to use longer passwords: UNIX initially required only

lowercase, 5 letter passwords

How long for an exhaustive search? 265 = 10 million

In 1975, 10 ms to check a password -> 1 day

In 1992, 0.001 ms to check a password -> 10 seconds

CS 162 Spring 2003 Lecture 24 3/19

Many people choose even simpler passwords, such as English words – takes even

less time to check for all words in the dictionary!

Some (partial) solutions:

a. Extend everyone’s password with a unique number (stored in

password file), so can’t crack multiple passwords at a time. UNIX uses

12-bit “salt” (makes it 212 or 4096 times harder).

The salt is used to increase the cost of dictionary attacks. If a salt were

not used, it would be possible to precompute a tape with all the words

in the dictionary encrypted (hashed), the dictionary attack would then

degenerate to simply streaming the pre-encrypted fields from the tape,

and comparing them to any password files being attacked.

A second reason for the use of salts, is that the way that the salt is

combined in a first stage which permutes the password with the salt is

designed to frustrate the use of off-the-shelf DES hardware.

Without salts, it would take less than 10 seconds to crack every

account on entire system!

b. Require more complex passwords. For example: 6 letters (uppercase

and lowercase), numbers, and special characters:

706 ≈ 600 billion, or 6 days

Except, people still pick common patterns (ex: 5 lower case letters,

plus one number).

c. Make it take a long time to check each password. For example, delay

every remote login attempt by 1 second.

d. Assign very long passwords. Give everyone a smart card (or ATM

card) to carry around to remember the password. Requires physical

theft to steal password.

Long passwords or passphrases can have more entropy (randomness ->

harder to crack).

CS 162 Spring 2003 Lecture 24 4/19

Smart cards – generate pseudorandom number (client and server both

have the same initial seed and accurate clocks). Can have a keyboard

(for PIN code) or user can prepend/append PIN – helps prevent theft

problems.

Problem 3: Can you trust the encryption algorithm? Example: one algorithm that

was thought to be safe had a back door. If there is a back door, means you don’t

need to do complete exhaustive search.

Also, security through obscurity doesn’t work (Example: GSM encryption

algorithm was secret, accidentally released – Berkeley graduate students cracked

it in a few hours! Also, found that the algorithm was purposefully weakened!)

24.3 Authentication in distributed systems

Two roles for encryption:

a. Authentication

b. Secrecy – I don’t want anyone to know this data (e.g., medical records,

etc.)

24.3.1 Private key encryption

Private key: use an encryption algorithm that can be easily reversed, given the

correct key (and hard to reverse without the key)

CS 162 Spring 2003 Lecture 24 5/19

Spy

plaintext
encrypt

password

cipher text

cipher textplaintext
decrypt

password

CIA

secure

secure

insecure
transmission

From cipher text, can’t derive plain text (decode) without password.

From plain text and cipher text, can’t derive password!

As long as password stays secret, get both secrecy and authentication.

But how do you get shared secret in both places? (e.g., key distribution)

Authentication server (example: Kerberos)

Server keeps list of passwords, provides a way for two parties, A, B to talk to one

another, as long as they trust server.

CS 162 Spring 2003 Lecture 24 6/19

Notation:

Kxy is a key for talking between x and y.

(..)K means, encrypt message (…) with the key K.

A asks server for key:

A -> S (Hi! I’d like a key for talking between A and B)

Server gives back special session key encrypted using B’s key:

S -> A (Use Kab (This is A! Use Kab)
Ksb)Ksa

A gives B the ticket:

A -> B (This is A! Use Kab)
Ksb

Lots of details:

1. Add in timestamps to limit how long a key will be used and to prevent a

machine from replaying messages later!

2. Also have to include encrypted checksums (hashed version of message), to

prevent malicious user from inserting stuff into the message or changing the

message!

3. Want to minimize # of times password must be typed in, and minimize

amount of time password is stored on machine. So initially ask the server for

a temporary password, using the real password for authentication:

A->S (Give me a temporary secret)

S->A (Use Ktemp-sa for the next 8 hours)Ksa

Can now use Ktemp-sa in place of Ksa above.

24.3.2 Public key encryption

With a private key system you encrypt a message and decrypt the message with

the same key. Private key systems are also called symmetric systems. Such

systems require that parties share a trusted authentication server.

What if A and B don’t share a trusted authentication server?

CS 162 Spring 2003 Lecture 24 7/19

Public key encryption is an alternative to private key; separates authentication

from secrecy.

With a public key system, each key is a pair: Kpublic, Kprivate, such that:

(text)Kpublic = ciphertext

(ciphertext)Kprivate = text

and

(text)Kprivate = ciphertext’

NOTE: not same ciphertext as above!

(ciphertext’)Kpublic = text

and:

(ciphertext)Kpublic != text

(ciphertext’)Kprivate != text

and: can’t derive Kpublic from Kprivate or vice versa.

Idea is: Kprivate kept secret, Kpublic put in a telephone directory.

For example, assume KFprivate and KFpublic are Fred’s keys and KJprivate and KJpublic

are Joe’s keys:

(I’m Fred!)KFprivate

Everyone can read it, but only Fred can send it (authentication)

(Hi!)KFpublic

Anyone can send it, but only Fred can read it (secrecy)

((I’m Fred!)KFprivate Hi!)KJpublic

Only Fred can send it, only Joe can read it.

Problem: how do you trust dictionary of public keys?

24.4 Authorization
Authorization: who can do what.

CS 162 Spring 2003 Lecture 24 8/19

Basic concepts covered in a previous lecture – quick review:

Access control matrix: formalization of all the permissions in the system

Objects

users

file1 file2 file3 ...

A Rw r

B rw

C r

...

For example, one box represents C can read file3.

Potentially huge # of users, operations, so impractical to store all of these

Two approaches:

1. Access control list – store all permissions for all users with each object

Still, might be lots of users! UNIX addresses this by having each file store: r,

w, x for owner, group, world. More recent systems provide way of specifying

groups of users, and permissions for each group.

2. Capability list – each process, stores all objects the process has permission to

touch

Lots of capability systems built in the past; idea out of favor today. But page

tables are an example. Each process has list of pages it has access to; not each

page has list of processes that are permitted to access it.

The real problem: how fine-grained should authorization be?

Example of the problem:

Suppose you buy a copy of a new game from “Joe’s Game World” and

then run it.

CS 162 Spring 2003 Lecture 24 9/19

It’s running with your userid.

It removes all the files you own, including the project due the next day!

How can you prevent this?

• Have to run the program under some userid. Could create a second

games userid for the user, which has no write privileges.

Like the nobody userid in UNIX – can’t do much.

• But what if the game needs to write out a file recording scores? Would

need to modify your games userid to have write privileges to one

particular file (or directory).

• But what about non-game programs you want to use, such as Quicken?

Now you need to create your own private quicken userid, if you want

to make sure that the copy of Quicken you bought can’t corrupt non-

Quicken-related files.

• What about word processor programs, which need to have read/write

access to entire categories of files?

One semi-satisfactory way to deal with this problem is to only use software from

sources you trust, thereby dealing with the problem by means of a form of

authentication.

That’s fine for big, established firms, like Microsoft. But what about new start-

ups? Who “validates” them?

Can establish validation agencies. But how easy is it to fool them? We have no

real experience with this yet.

An even bigger risk these days:

• “Programs” can appear on your machine in the form of macros

attached to your documents (as is the case with Microsoft Word and

Excel)

• Java applets that are part of Web pages!

Macros (typically) run with full privileges and may get automatically invoked as

part of initially accessing a document, or as part of saving the document later on.

CS 162 Spring 2003 Lecture 24 10/19

Macros can be used as virus vectors – replicating themselves when documents are

opened or copied.

Java applets are normally sand-boxed: the Java Virtual Machine inside a Web

browser runs them with no privileges except the ability to send and retrieve data

from the server that the Web page they are part of is from.

However, as Web page designers have created ever more sophisticated applets,

they have started demanding that Java allow limited access to the resources of the

client machine that the Web browser is being run on.

The general problem:

• How do I specify the exact privileges that something running on my

behalf should have?

• How to avoid making this specification task so onerous that no one

will put up with it?

24.5 Enforcement
Enforcer checks passwords, access control lists, etc.

Any bug in enforcer means: way for malicious user to gain ability to do anything!

In UNIX, superuser has all the powers of the UNIX kernel – can do anything.

Because of coarse-grained access control, lots of stuff has to run as superuser in

order to work. If there’s a bug in any one of these programs, you’re hosed!

Paradox:

a. Bullet-proof enforcer

Only known way is to make enforcer as small as possible.

Easier to make correct, but simple-minded protection model

b. Fancy protection – only minimal privilege necessary

Hard to get right.

24.6 State of the world in security
Authentication – encryption

But almost nobody encrypts!

CS 162 Spring 2003 Lecture 24 11/19

Authorization – access control

But many systems provide only very coarse-grained access control (ex:

UNIX – means, need to turn off protection to enable sharing)

Enforcement – kernel mode

Hard to write a million line program without bugs, and any bug is a

potential security loophole.

24.7 Classes of security problems

24.7.1 Abuse of privilege

If the superuser is evil, we’re all in trouble

Nothing you can do about this

24.7.2 Imposter

Break into system by pretending to be someone else.

For example, in UNIX, can set up an .rhosts file to allow logins from one

machine to another, without having to re-type password.

Also allows “rsh” – command to do an operation on a remote node.

Combination means: send rsh request, pretending to be from the trusted user, to

install .rhosts file granting imposter full access!

Similarly, if you have open X windows connection over the network, an imposter

can send messages appearing to be keystrokes from a window, but really they are

commands to give the imposter access.

Currently, X has no way of encrypting its packets – so no way to stop this!

24.7.3 Trojan horse

One army gave another a present of a wooden horse, army hidden inside.

Trojan horse appears helpful, but really does something harmful

CS 162 Spring 2003 Lecture 24 12/19

24.7.4 Salami attack

Idea: steal or corrupt something a little bit at a time.

For example: What do you do with all those partial pennies from bank interest?

Bank keeps it! Hacker re-programmed it so that the partial pennies would

go into his account. Doesn’t seem like much, but if you are Bank of

America, with a few million customers, adds up pretty quickly!

24.7.5 Eavesdropping

Listener – tap into serial line on the back of the terminal, or onto Ethernet. See

everything typed in; almost everything goes over network unencrypted. For

instance, rlogin to remote machine, your password goes over the network

unencrypted!

Spoiler – not stealing information, just making system unusable. Just chews up

system resources; electronic equivalent of vandalism.

How do you prevent these? Hard to build system that is both useful, and prevents

misuse.

24.8 Concrete Examples

24.8.1 Tenex – early 70’s, BBN

Most popular system at universities before UNIX

Thought to be very secure. To demonstrate it, created a team to try to find

loopholes. Gave them all the source code and documentation (want code to be

publicly available, as in UNIX); gave them a normal account.

In 48 hours, they had every password in the system.

Here’s the code for the password check:

for (i = 0; i < 8; i++)

if (userPasswd[i] != realPasswd[i])

CS 162 Spring 2003 Lecture 24 13/19

go to error

Looks innocuous, like you’d have to try all combinations. 2568

Wrong!

Tenex also used virtual memory, and it interacts badly with the above code.

Key idea: force page faults at inopportune times; can break passwords quickly.

Arrange first character in string to be the last character in page, rest to be on the

next page. Arrange for the page with the first character to be in memory, and rest

to be on disk (for example, by referencing lots of other pages, then referencing the

first page).

 a|aaaaaa

 |

 page in memory| page on disk

By timing how long the password check takes, can figure out whether the first

character is correct!

• If fast, first char is wrong

• If slow, first char is right, page fault, one of the others was wrong

So try all first characters, until one is slow. Then put first two characters in

memory, and the rest on disk. Try all second characters, until one is slow.

Means takes only a maximum of 256 * 8 attempts to crack passwords.

Fix is easy, don’t stop until you look at all the characters.

But how do you figure this out in advance?

CS 162 Spring 2003 Lecture 24 14/19

24.8.2 Internet worm

Ten years ago, the worm broke into thousands of computers over Internet.

Three attacks:

1. Dictionary lookup-based password cracking

2. sendmail

– Debug mode, if configured wrong, can let anybody log in

3. fingerd

– finger adj@cs

fingerd didn’t check for length of string, but only allocated a fixed size

array for it on the stack. By passing a (carefully crafted) really long string,

a program could overwrite fingerd’s stack and get the program to call

arbitrary code!

Got caught because the idea was to launch attacks on other systems from

whatever systems were broken into; so ended up breaking into same machine

multiple times, dragged CPU down so much that people noticed (was a bug in the

code).

Variant of this problem: kernel checks system call parameters to prevent anyone

from corrupting it by passing bad arguments.

So kernel code looks like:

Check parameters; if ok, use arguments

But what if application is multithreaded? Can change contents of arguments after

check and before use!

24.8.3 Kevin Mitnick

Two attacks:

1. Misdirection: Identify system managers’ machines, then loop, requesting TCP

connections to those machines, until no more connections are permitted.

Freezes those machines.

CS 162 Spring 2003 Lecture 24 15/19

Meanwhile:

2. Imposter: forge packets to appear as if legitimate (e.g., by replacing source

address in packet header), but really from Mitnick.

If notice an open, idle rlogin connection, for example, can send packets as if user

typed command to add Mitnick to .rhosts.

24.8.4 Netscape follies

Netscape claimed to provide secure communication, for example, so you could

send a credit card # over the Internet.

Three problems (reported in NYT):

1. Algorithm for picking session keys was predictable (used time of day). Brute

force allowed someone to break a session key in a matter of hours.

2. Made new version of Netscape to fix #1, available to users over Internet

(unencrypted!). Four byte patch to Netscape executable can make it always

use a specific session key – so can insert backdoor by mangling packets

containing executable as they fly by on the Internet.

In fact, because of demand, they had a dozen mirror sites (including Berkeley)

to redistribute new version. So anyone with root access to any machine on

LAN at mirror site could insert the backdoor.

3. Buggy helper applications. As with fingerd attack, *any* bug in either

Netscape, or its helper applications (e.g., ghostview), can potentially be

exploited by creating a Web page that when viewed, will insert a Trojan

horse.

Can you trust an application that was preloaded on your computer at the factory?

• Not really, a major computer manufacturer just shipped several

thousand computers with the CIH virus.

• Software companies, PR firms, and others routinely release software

that contains viruses.

CS 162 Spring 2003 Lecture 24 16/19

24.8.5 Ken Thompson’s self-replicating program

Bury Trojan horse in binaries, so there’s no evidence in the source

Replicates itself to every UNIX system in the world, and even to new UNIX’s on

new platforms. No visible sign.

Gave Ken Thompson the ability to log into any UNIX system in the world.

Two steps:

1. Make it possible (easy)

2. Hide it (tricky)

Step 1. Modify login.c

A:

if (name == “ken”)

don’t check password

log in as root

Idea is: hide change, so no one can see it.

Step 2. Modify the C compiler

Instead of having the code in login, put it in the compiler:

B:

if see trigger,

insert A into input stream

Whenever the compiler sees a trigger (/* gobbledygook */), puts A into

input stream of the compiler

Now, don’t need A in login.c, just need the trigger.

Need to get rid of the problem in the compiler

Step 3. Modify compiler to have:

if see trigger2

insert B + C into input stream

CS 162 Spring 2003 Lecture 24 17/19

This is where self-replicating code comes in! Question for reader: can you write a

C program that has no inputs, and outputs itself?

Step 4. Compile the compiler with C present

– Now it is in the binary for compiler

Step 5. Replace code with trigger2

Result is – all this stuff is only in the binary for the compiler. Inside the

binary there is C, inside that, code for B, inside that code for A. But

source code only needs trigger2!

Every time you recompile login.c, the compiler inserts the backdoor.

Every time you recompile the compiler, the compiler re-inserts the

backdoor.

What happens when you port to a new machine? Need a compiler to

generate code; where does that compiler run?

On the old machine – C compiler is written in C! So everytime you go to

a new machine, you infect the new compiler with the old one.

CS 162 Spring 2003 Lecture 24 18/19

24.9 How to Fix Security
Lots of examples of problems. How do we fix them?

Start with people!

1. Security education is critical because people:

• Write passwords down

• Share passwords

Guess what, it’s not how you think!

Classic attack: Company hires hackers to break into new system. Hackers

break in two hours later!

How? Social engineering

• Are fired/laid off

Worker who was laid off said, “I’ll show them I’m important”

Encrypted warehouse inventory database!

Millions of items, where are they?

Tried to blackmail company, failed because company went public.

Solution is to provide training and proper safeguards (e.g., smart cards,

limited access). Easy conceptually, hard in practice.

2. Secure distribution of software:

• Tight source access controls and code reviews.

Using source revision controls allows company to monitor changes and

helps recovery.

• Use antiviral software before releasing software.

• Sign software distribution with company’s public key (use hash to detect

changes).

How do you get the key? You don’t.

Instead, software preloaded on your computer contains the key of a trusted

Certificate Authority. CA uses their private key to encrypt the company’s

public key and information.

3. User’s machine determines sender and asks user for permission

Has to validate key, verify contents haven’t been tampered with while in

transit to user.

4. Same process can be used for updates

CS 162 Spring 2003 Lecture 24 19/19

In practice, most companies don’t use these mechanisms. And, when they do, it

still doesn’t work if there are any holes.

Alternative is Java approach: Use sandboxing and careful control of access points.

Very difficult to get correct!

24.10 Lessons
1. Hard to re-secure after penetration

What do you need to do remove the backdoor? Remove all the triggers?

What if he left another trigger in the editor – if you ever see anyone removing

this trigger, go back and re-insert it!

Re-write the entire OS in assembler? Maybe the assembler is corrupted!

Toggle in everything from scratch every time you log into the computer?

2. Hard to detect when system has been penetrated. Easy to make system forget

3. Any system with bugs has loopholes (and every system has bugs!)

Summary: can’t stop loopholes, can’t tell if it’s happened, can’t get rid of it.

