
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

January 19th, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 1.2 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Who am I?

Ion Stoica
•  Research

–  Networking
»  Topics: Quality of service, architectures
»  Projects: Internet Indirection Infrastructure,

Declarative Networks
–  Peer-to-Peer

»  Topics: distributed hash tables, lookup services
»  Projects: Chord, Internet Indirection

Infrastructure
–  Cloud computing

» Topics: Scheduling, resource management
»  Projects: Nexus (Cloud OS), Spark

–  Debugging and Replaying
»  Projects: Liblog, Friday, ODR (Output Deterministic

Replay)

Lec 1.3 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Goals for Today

•  What is an Operating System?
–  And – what is it not?

•  Examples of Operating Systems design
•  Why study Operating Systems?
•  Oh, and “How does this class operate?”

Interactive is important!
 Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides
courtesy of Kubiatowicz, AJ Shankar, George Necula, Alex Aiken,
Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

Lec 1.4 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Page 2

Lec 1.5 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce

 …

•  The world is a large parallel system
– Microprocessors in everything
–  Vast infrastructure behind them

Lec 1.6 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

People-to-Computer Ratio Over Time

•  Today: Multiple CPUs/person!
–  Approaching 100s?

From David Culler

Lec 1.7 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

New Challenge: Slowdown in Joy’s law of Performance

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006	

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X

Lec 1.8 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

ManyCore Chips: The future is here

•  “ManyCore” refers to many processors/chip
–  64? 128? Hard to say exact boundary

•  How to program these?
–  Use 2 CPUs for video/audio
–  Use 1 for word processor, 1 for browser
–  76 for virus checking?

•  Parallelism must be exploited at all levels

•  Intel 80-core multicore chip (Feb 2007)
–  80 simple cores
–  Two floating point engines /core
–  Mesh-like "network-on-a-chip“
–  100 million transistors
–  65nm feature size

Frequency Voltage Power Bandwidth Performance
3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01 Teraflops
5.1 GHz 1.2 V 175W 2.61 Terabits/s 1.63 Teraflops
5.7 GHz 1.35 V 265W 2.92 Terabits/s 1.81 Teraflops

Page 3

Lec 1.9 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Another Challenge: Power Density

•  Moore’s Law Extrapolation
–  Potential power density reaching amazing levels!

•  Flip side: Battery life very important
– Moore’s law can yield more functionality at equivalent
(or less) total energy consumption

Lec 1.10 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Computer System Organization

•  Computer-system operation
– One or more CPUs, device controllers connect
through common bus providing access to shared
memory

–  Concurrent execution of CPUs and devices
competing for memory cycles

Lec 1.11 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Sample of Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

Lec 1.12 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Increasing Software Complexity

From MIT’s 6.033 course

Page 4

Lec 1.13 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Example: Some Mars Rover (“Pathfinder”) Requirements
•  Pathfinder hardware limitations/complexity:

–  20Mhz processor, 128MB of DRAM, VxWorks OS
–  cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
–  Many independent processes work together

•  Can’t hit reset button very easily!
–  Must reboot itself if necessary
–  Must always be able to receive commands from Earth

•  Individual Programs must not interfere
–  Suppose the MUT (Martian Universal Translator Module) buggy
–  Better not crash antenna positioning software!

•  Further, all software may crash occasionally
–  Automatic restart with diagnostics sent to Earth
–  Periodic checkpoint of results saved?

•  Certain functions time critical:
–  Need to stop before hitting something
–  Must track orbit of Earth for communication

Lec 1.14 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

How do we tame complexity?

•  Every piece of computer hardware different
–  Different CPU

»  Pentium, PowerPC, ColdFire, ARM, MIPS
–  Different amounts of memory, disk, …
–  Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers, touch screen

–  Different networking environment
» Cable, DSL, Wireless, Firewalls,…

•  Questions:
–  Does the programmer need to write a single program
that performs many independent activities?

–  Does every program have to be altered for every
piece of hardware?

–  Does a faulty program crash everything?
–  Does every program have access to all hardware?

Lec 1.15 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

OS Tool: Virtual Machine Abstraction

•  Software Engineering Problem:
–  Turn hardware/software quirks ⇒

 what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

•  For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 1.16 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Interfaces Provide Important Boundaries

•  Why do interfaces look the way that they do?
–  History, Functionality, Stupidity, Bugs, Management
–  CS152 ⇒ Machine interface
–  CS160 ⇒ Human interface
–  CS169 ⇒ Software engineering/management

•  Should responsibilities be pushed across boundaries?
–  RISC architectures, Graphical Pipeline Architectures

instruction set

software

hardware

Page 5

Lec 1.17 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Virtual Machines
•  Software emulation of an abstract machine

– Make it look like hardware has features you want
–  Programs from one hardware & OS on another one

•  Programming simplicity
–  Each process thinks it has all memory/CPU time
–  Each process thinks it owns all devices
–  Different Devices appear to have same interface
–  Device Interfaces more powerful than raw hardware

» Bitmapped display ⇒ windowing system
» Ethernet card ⇒ reliable, ordered, networking (TCP/IP)

•  Fault Isolation
–  Processes unable to directly impact other processes
–  Bugs cannot crash whole machine

•  Protection and Portability
–  Java interface safe and stable across many platforms

Lec 1.18 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Virtual Machines (con’t): Layers of OSs

•  Useful for OS development
– When OS crashes, restricted to one VM
–  Can aid testing programs on other OSs

Lec 1.19 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Course Administration

•  Instructor: Ion Stoica (istoica@cs.berkeley.edu)
 465 Soda Hall
 Office Hours(Tentative):TT 2:00pm-3:00pm

•  TAs: Matei Zaharia (cs162-ta@cory)
 Andy Konwinski (cs162-tb@cory)
 Benjamin Hindman (cs162-tc@cory)

•  Labs: Second floor of Soda Hall
•  Website: http://inst.eecs.berkeley.edu/~cs162

 Webcast: http://webcast.berkeley.edu/courses/index.php
•  Newsgroup: ucb.class.cs162 (use news.csua.berkeley.edu)
•  Course Email: cs162@cory.cs.berkeley.edu
•  Reader: TBA (Stay tuned!)

Lec 1.20 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Class Schedule
•  Class Time: TT 3:30-5:00 PM, 277 Cory Hall

–  Please come to class. Lecture notes do not have everything
in them. The best part of class is the interaction!

–  Also: 5% of the grade is from class participation (section
and class)

•  Sections:
–  Important information is in the sections
–  The sections assigned to you by Telebears are temporary!
–  Every member of a project group must be in same section
–  No sections this week (obviously); start next week

Section Time Location TA
101 W 10:00A-11:00A 2 Evans Matei Zaharia
102 W 2:00P-3:00P 75 Evans Andy Kowinski
103 W 3:00P-4:00P 2 Evans Ben Hindman

Page 6

Lec 1.21 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Textbook

•  Text: Operating Systems Concepts,
 8th Edition Silbershatz, Galvin, Gagne

•  Online supplements
–  See “Information” link on course website
–  Includes Appendices, sample problems, etc

•  Question: need 8th edition?
– No, but has new material that we may cover
–  Completely reorganized
– Will try to give readings from both the 7th and 8th
editions on the lecture page

Lec 1.22 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Topic Coverage

 Textbook: Silberschatz, Galvin, and Gagne,
Operating Systems Concepts, 8th Ed., 2008

•  1 week: Fundamentals (Operating Systems Structures)
•  1.5 weeks: Process Control and Threads
•  2.5 weeks: Synchronization and scheduling
•  2 week: Protection, Address translation, Caching
•  1 week: Demand Paging
•  1 week: File Systems
•  2.5 weeks: Networking and Distributed Systems
•  1 week: Protection and Security
•  ??: Advanced topics

Lec 1.23 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Grading

•  Rough Grade Breakdown
– One Midterm: 20% each
One Final: 25%
Four Projects: 50% (i.e. 12.5% each)
Participation: 5%

•  Four Projects:
–  Phase I: Build a thread system
–  Phase II: Implement Multithreading
–  Phase III: Caching and Virtual Memory
–  Phase IV: Networking and Distributed Systems

•  Late Policy:
– No slip days!
–  10% off per day after deadline

Lec 1.24 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Group Project Simulates Industrial Environment

•  Project teams have 4 or 5 members in same
discussion section
– Must work in groups in “the real world”

•  Communicate with colleagues (team members)
–  Communication problems are natural
– What have you done?
– What answers you need from others?
–  You must document your work!!!
–  Everyone must keep an on-line notebook

•  Communicate with supervisor (TAs)
–  How is the team’s plan?
–  Short progress reports are required:

» What is the team’s game plan?
» What is each member’s responsibility?

Page 7

Lec 1.25 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Typical Lecture Format

•  1-Minute Review
•  20-Minute Lecture
•  5- Minute Administrative Matters
•  25-Minute Lecture
•  5-Minute Break (water, stretch)
•  25-Minute Lecture

Attention

Time

20 min. Break “In Conclusion, ...” 25 min. Break 25 min.

Lec 1.26 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Lecture Goal

Interactive!!!

Lec 1.27 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Computing Facilities

•  Every student who is enrolled should get an
account form at end of lecture
–  Gives you an account of form cs162-xx@cory
–  This account is required

» Most of your debugging can be done on other EECS
accounts, however…

» All of the final runs must be done on your cs162-xx
account and must run on the x86 Solaris machines

•  Make sure to log into your new account this week
and fill out the questions

•  Project Information:
–  See the “Projects and Nachos” link off the course
home page

•  Newsgroup (ucb.class.cs162):
–  Read this regularly!

Lec 1.28 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

What does an Operating System do?
•  Silerschatz and Gavin:

 “An OS is Similar to a government”
–  Begs the question: does a government do anything useful by

itself?
•  Coordinator and Traffic Cop:

–  Manages all resources
–  Settles conflicting requests for resources
–  Prevent errors and improper use of the computer

•  Facilitator:
–  Provides facilities that everyone needs
–  Standard Libraries, Windowing systems
–  Make application programming easier, faster, less error-prone

•  Some features reflect both tasks:
–  E.g. File system is needed by everyone (Facilitator)
–  But File system must be Protected (Traffic Cop)

Page 8

Lec 1.29 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

What is an Operating System,… Really?

•  Most Likely:
– Memory Management
–  I/O Management
–  CPU Scheduling
–  Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

•  What about?
–  File System?
– Multimedia Support?
–  User Interface?
–  Internet Browser?

•  Is this only interesting to Academics??

Lec 1.30 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Operating System Definition (Cont.)

•  No universally accepted definition
•  “Everything a vendor ships when you order an

operating system” is good approximation
–  But varies wildly

•  “The one program running at all times on the
computer” is the kernel.
–  Everything else is either a system program (ships
with the operating system) or an application
program

Lec 1.31 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

OS Systems Principles

•  OS as illusionist:
– Make hardware limitations go away
–  Provide illusion of dedicated machine with infinite
memory and infinite processors

•  OS as government:
–  Protect users from each other
–  Allocate resources efficiently and fairly

•  OS as complex system:
–  Constant tension between simplicity and
functionality or performance

•  OS as history teacher
–  Learn from past
–  Adapt as hardware tradeoffs change

Lec 1.32 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

Why Study Operating Systems?

•  Learn how to build complex systems:
–  How can you manage complexity for future projects?

•  Engineering issues:
– Why is the web so slow sometimes? Can you fix it?
– What features should be in the next mars Rover?
–  How do large distributed systems work? (Bittorrent, etc)

•  Buying and using a personal computer:
– Why different PCs with same CPU behave differently
–  How to choose a processor (Opteron, Itanium, Celeron,
Pentium)

–  Should you get Windows XP, 2000, Linux, Mac OS …?
•  Business issues:

–  Should your division buy thin-clients vs PC?
•  Security, viruses, and worms

– What exposure do you have to worry about?

Page 9

Lec 1.33 1/19/10 Ion Stoica CS162 ©UCB Spring 2010

“In conclusion…”

•  Operating systems provide a virtual machine
abstraction to handle diverse hardware

•  Operating systems coordinate resources and
protect users from each other

•  Operating systems simplify application
development by providing standard services

•  Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

•  CS162 combines things from many other areas of
computer science –
–  Languages, data structures, hardware, and
algorithms

