
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 3

Concurrency:
Processes, Threads, and Address Spaces

January 26, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 3.2 1/26/10 CS162 ©UCB Spring 2010

•  Developed by the research community
–  Based on open standard: Internet Protocol
–  Internet Engineering Task Force (IETF)

•  Technical basis for many other types of networks
–  Intranet: enterprise IP network

•  Services Provided by the Internet
–  Shared access to computing resources: telnet (1970’s)
–  Shared access to data/files: FTP, NFS, AFS (1980’s)
–  Communication medium over which people interact

»  email (1980’s), on-line chat rooms, instant messaging (1990’s)
»  audio, video (1990’s, early 00’s)

–  Medium for information dissemination
»  USENET (1980’s)
»  WWW (1990’s)
»  Audio, video (late 90’s, early 00’s) – replacing radio, TV?
»  File sharing (late 90’s, early 00’s)

History Phase 4 (1988—): Internet

Lec 3.3 1/26/10 CS162 ©UCB Spring 2010

Network “Cloud”

Lec 3.4 1/26/10 CS162 ©UCB Spring 2010

Regional
Net

Regional Nets + Backbone

Regional
Net Regional

Net

Regional
Net Regional

Net

Regional
Net

Backbone

LAN LAN LAN

LAN: Local Area Network

Page 2

Lec 3.5 1/26/10 CS162 ©UCB Spring 2010

ISP

Backbones + NAPs + ISPs

ISP

ISP
ISP

Business
ISP

Consumer
ISP

LAN LAN LAN

NAP NAP
Backbones

Dial-up

ISP: Internet Service Provide
NAP: Network Access Point

Lec 3.6 1/26/10 CS162 ©UCB Spring 2010

Covad

Computers Inside the Core

@home

ISP
Cingular

Sprint AOL

LAN LAN LAN

NAP

Dial-up

DSL
Always on

NAP

Cable
Head Ends

Cell
Cell

Cell

Satellite
Fixed Wireless

Lec 3.7 1/26/10 CS162 ©UCB Spring 2010

The Morris Internet Worm (1988)
•  Internet worm (Self-reproducing)

–  Author Robert Morris, a first-year Cornell grad student
–  Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

•  Techniques
–  Exploited UNIX networking features (remote access)
–  Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

–  Dictionary lookup-based password cracking
–  Grappling hook program uploaded main worm program

Lec 3.8 1/26/10 CS162 ©UCB Spring 2010

LoveLetter Virus (May 2000)
•  E-mail message with

VBScript (simplified Visual
Basic)

•  Relies on Windows
Scripting Host

–  Enabled by default in
Win98/2000

•  User clicks on
attachment infected!

–  E-mails itself to everyone
in Outlook address book

–  Replaces some files with a
copy of itself

–  Searches all drives
–  Downloads password

cracking program
•  60-80% of US companies

infected and 100K
European servers

Page 3

Lec 3.9 1/26/10 CS162 ©UCB Spring 2010

History Phase 5 (1995—): Mobile Systems

•  Ubiquitous Mobile Devices
–  Laptops, PDAs, phones
–  Small, portable, and inexpensive

» Many computers/person!
–  Limited capabilities (memory, CPU, power, etc…)

•  Wireless/Wide Area Networking
–  Leveraging the infrastructure
–  Huge distributed pool of resources extend devices
–  Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

•  Peer-to-peer systems
– Many devices with equal responsibilities work together
–  Components of “Operating System” spread across globe

Lec 3.10 1/26/10 CS162 ©UCB Spring 2010

Datacenter is the Computer

•  (From Luiz Barroso’s talk at RAD Lab 12/11)
•  Google program == Web search, Gmail,…
•  Google computer ==

–  Thousands of computers, networking, storage
•  Warehouse-sized facilities and workloads may be

unusual today but are likely to be more common in
the next few years

Lec 3.11 1/26/10 CS162 ©UCB Spring 2010

Migration of Operating-System Concepts and Features

Lec 3.12 1/26/10 CS162 ©UCB Spring 2010

Implementation Issues
(How is the OS implemented?)

•  Policy vs. Mechanism
–  Policy: What do you want to do?
– Mechanism: How are you going to do it?
–  Should be separated, since both change

•  Algorithms used
–  Linear, Tree-based, Log Structured, etc…

•  Event models used
–  threads vs event loops

•  Backward compatability issues
–  Very important for Windows 2000/XP

•  System generation/configuration
–  How to make generic OS fit on specific hardware

Page 4

Lec 3.13 1/26/10 CS162 ©UCB Spring 2010

Administriva: Time for Project Signup
•  Section assignments are done

–  Watch for section assignments after the class
–  Attend new sections tomorrow

•  Project Signup: Watch “Group/Section Assignment Link”
–  4-5 members to a group

»  Everyone in group must be able to actually attend same section
–  Only submit once per group!

»  Everyone in group must have logged into their cs162-xx
accounts once before you register the group

»  Due Friday 1/29 by 11:59pm

Section Time Location TA
101 W 10:00A-11:00A 2 Evans Matei Zaharia
102 W 2:00P-3:00P 75 Evans Andy Konwinski
103 W 3:00P-4:00P 2 Evans Ben Hindman

Lec 3.14 1/26/10 CS162 ©UCB Spring 2010

Administrivia (2)

•  Cs162-xx accounts:
– Make sure you got an account form
–  If you haven’t logged in yet, you need to do so

•  Tuesday: Start Project 1
–  Go to Nachos page and start reading up
– Note that all the Nachos code will be printed in your
reader (TBA)

Lec 3.15 1/26/10 CS162 ©UCB Spring 2010

Goals for Today

•  How do we provide multiprogramming?
•  What are Processes?
•  How are they related to Threads and Address

Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated by John Kubiatowicz.

Lec 3.16 1/26/10 CS162 ©UCB Spring 2010

Concurrency

•  “Thread” of execution
–  Independent Fetch/Decode/Execute loop
– Operating in some Address space

•  Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing
–  Easier for operating system builder
–  Get rid concurrency by definition
–  Does this make sense for personal computers?

•  Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP/7,
Mac OS X

– Often called “multitasking”, but multitasking has other
meanings (talk about this later)

•  ManyCore ⇒ Multiprogramming, right?

Page 5

Lec 3.17 1/26/10 CS162 ©UCB Spring 2010

The Basic Problem of Concurrency

•  The basic problem of concurrency involves resources:
–  Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive
access to shared resources

•  OS Has to coordinate all activity
– Multiple users, I/O interrupts, …
–  How can it keep all these things straight?

•  Basic Idea: Use Virtual Machine abstraction
–  Decompose hard problem into simpler ones
–  Abstract the notion of an executing program
–  Then, worry about multiplexing these abstract machines

•  Dijkstra did this for the “THE system”
–  Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 3.18 1/26/10 CS162 ©UCB Spring 2010

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during execution?

•  Execution sequence:
–  Fetch Instruction at PC
–  Decode
–  Execute (possibly using registers)
– Write results to registers/mem
–  PC = Next Instruction(PC)
–  Repeat

PC
PC
PC
PC

Lec 3.19 1/26/10 CS162 ©UCB Spring 2010

How can we give the illusion of multiple processors?

CPU3 CPU2 CPU1

Shared Memory

•  Assume a single processor. How do we provide the
illusion of multiple processors?
– Multiplex in time!

•  Each virtual “CPU” needs a structure to hold:
–  Program Counter (PC), Stack Pointer (SP)
–  Registers (Integer, Floating point, others…?)

•  How switch from one CPU to the next?
–  Save PC, SP, and registers in current state block
–  Load PC, SP, and registers from new state block

•  What triggers switch?
–  Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

Lec 3.20 1/26/10 CS162 ©UCB Spring 2010

Properties of this simple multiprogramming technique

•  All virtual CPUs share same non-CPU resources
–  I/O devices the same
– Memory the same

•  Consequence of sharing:
–  Each thread can access the data of every other
thread (good for sharing, bad for protection)

–  Threads can share instructions
(good for sharing, bad for protection)

–  Can threads overwrite OS functions?
•  This (unprotected) model common in:

–  Embedded applications
– Windows 3.1/Machintosh (switch only with yield)
– Windows 95—ME? (switch with both yield and timer)

Page 6

Lec 3.21 1/26/10 CS162 ©UCB Spring 2010

Modern Technique: SMT/Hyperthreading
•  Hardware technique

–  Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors

–  Higher utilization of
processor resources

•  Can schedule each thread
as if were separate CPU
–  However, not linear
speedup!

–  If multiprocessor,
should schedule each
processor first

•  Original technique called “Simultaneous Multithreading”
–  See http://www.cs.washington.edu/research/smt/
–  Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

Lec 3.22 1/26/10 CS162 ©UCB Spring 2010

How to protect threads from one another?

•  Need three important things:
1.  Protection of memory

»  Every task does not have access to all memory
2.  Protection of I/O devices

»  Every task does not have access to every device
3.  Protection of Access to Processor:

Preemptive switching from task to task
»  Use of timer
»  Must not be possible to disable timer from

usercode

Lec 3.23 1/26/10 CS162 ©UCB Spring 2010

Program
 A

ddress Space

Recall: Program’s Address Space

•  Address space ⇒ the set of
accessible addresses + state
associated with them:
–  For a 32-bit processor there are
232 = 4 billion addresses

•  What happens when you read or
write to an address?
–  Perhaps Nothing
–  Perhaps acts like regular memory
–  Perhaps ignores writes
–  Perhaps causes I/O operation

»  (Memory-mapped I/O)
–  Perhaps causes exception (fault)

Lec 3.24 1/26/10 CS162 ©UCB Spring 2010

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data Translation Map 1 Translation Map 2

Physical Address Space

Page 7

Lec 3.25 1/26/10 CS162 ©UCB Spring 2010

Traditional UNIX Process

•  Process: Operating system abstraction to
represent what is needed to run a single program
– Often called a “HeavyWeight Process”
–  Formally: a single, sequential stream of execution
in its own address space

•  Two parts:
–  Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

»  Includes State of CPU registers
–  Protected Resources:

» Main Memory State (contents of Address Space)
»  I/O state (i.e. file descriptors)

•  Important: There is no concurrency in a
heavyweight process

Lec 3.26 1/26/10 CS162 ©UCB Spring 2010

Process
Control
Block

How do we multiplex processes?
•  The current state of process held in a

process control block (PCB):
–  This is a “snapshot” of the execution and
protection environment

– Only one PCB active at a time
•  Give out CPU time to different

processes (Scheduling):
– Only one process “running” at a time
–  Give more time to important processes

•  Give pieces of resources to different
processes (Protection):
–  Controlled access to non-CPU resources
–  Sample mechanisms:

» Memory Mapping: Give each process their
own address space

»  Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

Lec 3.27 1/26/10 CS162 ©UCB Spring 2010

CPU Switch From Process to Process

•  This is also called a “context switch”
•  Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
–  Less overhead with SMT/hyperthreading, but…
contention for resources instead

Lec 3.28 1/26/10 CS162 ©UCB Spring 2010

Diagram of Process State

•  As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Page 8

Lec 3.29 1/26/10 CS162 ©UCB Spring 2010

Process Scheduling

•  PCBs move from queue to queue as they change state
–  Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

Lec 3.30 1/26/10 CS162 ©UCB Spring 2010

What does it take to create a process?

•  Must construct new PCB
–  Inexpensive

•  Must set up new page tables for address space
– More expensive

•  Copy data from parent process? (Unix fork())
–  Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/O state

– Originally very expensive
– Much less expensive with “copy on write”

•  Copy I/O state (file handles, etc)
– Medium expense

Lec 3.31 1/26/10 CS162 ©UCB Spring 2010

Process =? Program

•  More to a process than just a program:
–  Program is just part of the process state
–  I run emacs on lectures.txt, you run it on
homework.java – Same program, different processes

•  Less to a process than a program:
–  A program can invoke more than one process
–  cc starts up cpp, cc1, cc2, as, and ld

main ()
{

 …;

}

A() {

 …

}

main ()
{

 …;

}

A() {

 …

}

Heap

Stack

A
main

Program Process

Lec 3.32 1/26/10 CS162 ©UCB Spring 2010

Multiple Processes Collaborate on a Task

•  High Creation/memory Overhead
•  (Relatively) High Context-Switch Overhead
•  Need Communication mechanism:

–  Separate Address Spaces Isolates Processes
–  Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

Page 9

Lec 3.33 1/26/10 CS162 ©UCB Spring 2010

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

•  Communication occurs by “simply” reading/writing
to shared address page
–  Really low overhead communication
–  Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared

Lec 3.34 1/26/10 CS162 ©UCB Spring 2010

Inter-process Communication (IPC)

•  Mechanism for processes to communicate and to
synchronize their actions

•  Message system – processes communicate with
each other without resorting to shared variables

•  IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

•  If P and Q wish to communicate, they need to:
–  establish a communication link between them
–  exchange messages via send/receive

•  Implementation of communication link
–  physical (e.g., shared memory, hardware bus,
systcall/trap)

–  logical (e.g., logical properties)

Lec 3.35 1/26/10 CS162 ©UCB Spring 2010

Modern “Lightweight” Process with Threads

•  Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)
–  Process still contains a single Address Space
– No protection between threads

•  Multithreading: a single program made up of a
number of different concurrent activities
–  Sometimes called multitasking, as in Ada…

•  Why separate the concept of a thread from that of
a process?
–  Discuss the “thread” part of a process (concurrency)
–  Separate from the “address space” (Protection)
–  Heavyweight Process ≡ Process with one thread

Lec 3.36 1/26/10 CS162 ©UCB Spring 2010

Single and Multithreaded Processes

•  Threads encapsulate concurrency: “Active” component
•  Address spaces encapsulate protection: “Passive” part

–  Keeps buggy program from trashing the system
•  Why have multiple threads per address space?

Page 10

Lec 3.37 1/26/10 CS162 ©UCB Spring 2010

Examples of multithreaded programs

•  Embedded systems
–  Elevators, Planes, Medical systems, Wristwatches
–  Single Program, concurrent operations

•  Most modern OS kernels
–  Internally concurrent because have to deal with
concurrent requests by multiple users

–  But no protection needed within kernel
•  Database Servers

–  Access to shared data by many concurrent users
–  Also background utility processing must be done

Lec 3.38 1/26/10 CS162 ©UCB Spring 2010

Examples of multithreaded programs (con’t)

•  Network Servers
–  Concurrent requests from network
–  Again, single program, multiple concurrent operations
–  File server, Web server, and airline reservation
systems

•  Parallel Programming (More than one physical CPU)
–  Split program into multiple threads for parallelism
–  This is called Multiprocessing

•  Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program
at a time

Lec 3.39 1/26/10 CS162 ©UCB Spring 2010

Thread State

•  State shared by all threads in process/addr space
–  Contents of memory (global variables, heap)
–  I/O state (file system, network connections, etc)

•  State “private” to each thread
–  Kept in TCB ≡ Thread Control Block
–  CPU registers (including, program counter)
–  Execution stack – what is this?

•  Execution Stack
–  Parameters, Temporary variables
–  return PCs are kept while called procedures are
executing

Lec 3.40 1/26/10 CS162 ©UCB Spring 2010

Execution Stack Example

•  Stack holds temporary results
•  Permits recursive execution
•  Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=2
 ret=C+1 Stack

Pointer

Stack Growth

A: tmp=1
 ret=exit

B: ret=A+2

C: ret=b+1

Page 11

Lec 3.41 1/26/10 CS162 ©UCB Spring 2010

Classification

•  Real operating systems have either
– One or many address spaces
– One or many threads per address space

•  Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIX MS/DOS, early
Macintosh

Many

One

threads
Per AS:

Many One

#
 o

f
ad

dr
sp

ac
es

:

Lec 3.42 1/26/10 CS162 ©UCB Spring 2010

Java APPS

OS

Hardware

Java OS
Structure

Example: Implementation Java OS
•  Many threads, one Address Space
•  Why another OS?

–  Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB
» Windows 2000/XP: 64-128MB

– What if we want a cheap network
point-of-sale computer?

» Say need 1000 terminals
» Want < 8MB

•  What language to write this OS in?
–  C/C++/ASM? Not terribly high-level.
Hard to debug.

–  Java/Lisp? Not quite sufficient – need
direct access to HW/memory management

Lec 3.43 1/26/10 CS162 ©UCB Spring 2010

Summary
•  Processes have two parts

–  Threads (Concurrency)
–  Address Spaces (Protection)

•  Concurrency accomplished by multiplexing CPU Time:
–  Unloading current thread (PC, registers)
–  Loading new thread (PC, registers)
–  Such context switching may be voluntary (yield(), I/
O operations) or involuntary (timer, other interrupts)

•  Protection accomplished restricting access:
– Memory mapping isolates processes from each other
–  Dual-mode for isolating I/O, other resources

•  Book talks about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

