CS162
Operating Systems and
Systems Programming
Lecture 10

Deadlock (cont'd)
Thread Scheduling

February 18, 2010
Ion Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Deadlock

+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

- Deadlock: circular waiting for resources

- Deadlock=>Starvation, but not other way around
* Four conditions for deadlocks

- Mutual exclusion

» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» There exists a set {T;, .., T,} of threads with a cyclic
waiting pattern

2/18/10 €5162 ©UCB Fall 2010 Lec 10.2

Review: Resource Allocation Graph Examples
* Recall:
- request edge - directed edge T; — R;
- assignment edge - directed edge R, — T;

R, R, R, R,

N K SN,
A\
) @)) () N

T Ts

Vi E VI E S
R > . -~
3 - R - =

Simple Resource Allocation 6raph Allocation 6raph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

2/18/10 C€S162 ©UCB Fall 2010 Lec 10.3

Review: Methods for Handling Deadlocks @'

+ Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for selectively preempting resources
and/or terminating tasks

+ Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

- Ignore the problem and pretend that deadlocks
never occur in the system

- used by most operating systems, including UNIX

2/18/10 €S162 ©UCB Fall 2010 Lec 10.4

Goals for Today

+ Preventing Deadlock

+ Scheduling Policy goals

+ Policy Options

- Implementation Considerations

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
2/18/10 €5162 ®UCB Fall 2010 Lec 10.5

Deadlock Detection Algorithm Example

[Available] = [1,1]

[Requesty;] = [0,1]

[Request ;] <=
[Available]

1 ©

[Available] = [0,0]

[Request,] = [0,0]

[Requesty,] <=
[Available]

[Available] = [1,0]

[Request] = [1,0]

[Requesty;] <=
[Available]

e

2/18/10 C€S162 ©UCB Fall 2010 Lec 10.7

Page 2

Deadlock Detection Algorithm

+ Only one of each type of resource = look for loops
+ More General Deadlock Detection Algorithm
- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each f%?e
[Request,] : Current requests from thread
[Alloc,]: Current resources held by thread X

- See if tasks can eventually terminate on their own

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED ({
if ([Request] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,]
done = false

}
}
} until (done)

- Nodes left in UNFINISHED = deadlocked

2/18/10 €5162 ©UCB Fall 2010 Lec 10.6

What to do when detect deadlock?

+ Terminate thread, force it to give up resources
- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!
- Shoot a dining philosopher
- But, not always possible - killing a thread holding a
mutex leaves world inconsistent
- Preempt resources without killing off thread
- Take away resources from thread temporarily
- Doesn't always fit with semantics of computation
+ Roll back actions of deadlocked threads
- Hit the rewind button on TiVo, pretend last few
minutes never happened
- For bridge example, make one car roll backwards (may
require others behind him)
- Common technique in databases (transactions)
- Of course, if you restart in exactly the same way, may
reenter deadlock once again

2/18/10 €S162 ©UCB Fall 2010 Lec 10.8

Techniques for Preventing Deadlock

+ Infinite resources

- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, just large

- Give illusion of infinite resources (e.g. virtual memory)
- Examples:

» Bay bridge with 12,000 lanes. Never wait!

» Infinite disk space (not realistic yet?)

* No Sharing of resources (totally independent threads)
- Not very realistic

+ Don't allow waiting
- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the
phone lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

2/18/10 €S162 ©UCB Fall 2010 Lec 10.9

Review: Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
+ Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

2/18/10 Lec 10.11

Page 3

Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time

» Don't leave home until we know no one is using any
intersection between here and where you want to go:
only one car on the Bay Bridge at a time

+ Force all threads to request resources in a particular
order preventing any cyclic use of resources
- Thus, preventing deadlock
- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring
everyone to go clockwise
€5162 ©UCB Fall 2010

2/18/10 Lec 10.10

Banker's Algorithm for Preventing Deadlock

+ Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if:
(available resources - #requested) = max
remaining that might be needed by any thread
+ Banker's algorithm (less conservative):
- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting

([Max,oq.]-[Alloc,,q.] < [Avail]) for ([Request,q.] < [Avail])
Grant request if result is deadlock free (conservativel)

» Keeps system in a "SAFE” state, i.e. there exists a
sequence {T;, T,, .. T} with T, requesting all remaining
resources, #inisﬁing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all

current threads to be s:lr'em‘er than total resources
/10 ¢5162 ©UCB Fall 2010 Lec 10.12

2/18

Banker's Algorithm Example

@)

- Banker's algorithm with dining philosophers

- "Safe” (I:IOI'I'T cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed philosophers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It's 34 to last, and no one would have k-2

2/18/13) €S162 ©UCB Fall 2010

Lec 10.13

CPU Scheduling
: ready queue

time slice
expired

wait for an
interrupt

+ Earlier, we talked about the life-cycle of a thread

- Active threads work their way from Ready queue to
Running to various waiting queues.

+ Question: How is the OS to decide which of several
threads to take off a queue?
- Obvious queue to worry about is ready queue
- Others can be scheduled as well, however
+ Scheduling: deciding which threads are given access

to resources from moment to moment
2/18/10 CS162 ©UCB Fall 2010

interrupt
occurs

Lec 10.15

Page 4

Administrivia

+ Project 1 code due this Monday (2/22)
+ Autograder will be available by tomorrow morning

+ Midterm coming up in two 1/2 weeks
- Tuesday, 3/9, 3:30 - 6:30 (Requested this room)
- Should be 2 hour exam with extra time
- Closed book, one page of hand-written notes (both sides)

+ Midterm Topics
- Everything up to previous Thursday, 3/5

- History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces

2/18/10 €5162 ©UCB Fall 2010 Lec 10.14

Scheduling Assumptions

+ CPU scheduling big area of research in early 70's
* Many implicit assumptions for CPU scheduling:
- One program per user
- One thread per program
- Programs are independent
+ Clearly, these are unrealistic but they simplify the
problem so it can be solved

- For instance: is "fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems
* The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time ———

2/18/10 €S162 ©UCB Fall 2010 Lec 10.16

Assumption: CPU Bursts

Weighted toward small bursts

frequency

wait for I/O } 1O burst 0 8 16 24 2 40

burst duration (milliseconds]

- Execution model: programs alternate between bursts of
CPU and I/0

- Program typically uses the CPU for some period of time,
then does 1/0, then uses CPU again

- Each scheduling decision is_about which job to give to the
CPU for use by its next CPU burst

- With timeslicing, thread may be forced to give up CPU

before finishing current CPU burst

2/18/10 €S162 ©UCB Fall 2010 Lec 10.17

First-Come, First-Served (FCFS) Scheduling

+ First-Come, First-Served (FCFS)
- Also "First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks
+ Example: Process Burst Time
P, 24
P 3
A, 3
Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
Waiting time for P, = 0: P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27

- Convoy effect: short process behind long process
2/18/10 C€S162 ©UCB Fall 2010 Lec 10.19

Page 5

Scheduling Policy Goals/Criteria

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
+ Fairness
- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:

» Better average response time bg making system less fair
5162 ©UCB Fall 2010 Lec 10.18

2/18/10

FCFS Scheduling (Cont.)

+ Example continued:

- Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

Ps Ps P

- Waiﬂn(g); time ?or P, g 6,P,=0.P;=3
- Average waiting time: (6 + 0 + 3)/3 = 3
- Average Completion time: (3 + 6 + 30)/3 = 13
+ In second case:
- average waiting time is much better (before it was 17)
- Average completion time is better (before it was 27)
* FIFO Pros and Cons:
- Simple (+)
- Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of

small items

2/18/10 €S162 ©UCB Fall 2010 Lec 10.20

Round Robin (RR)

+ FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order
- If you are first in line at supermarket with milk, you
don't care who is behind you, on the other hand...
* Round Robin Scheme

- Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

- After quantum expires, the process is preempted
and added to the end of the ready queue.
- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most g time units
» No process waits more than (n-1)g time units
* Performance
- ¢ large = FCFS
- ¢ small = Interleaved (really small = hyperthreading?)

- ¢ must be large with respect to context switch,
otherwise overhead is too high (all overhead)
2/18/10 CS162 ©UCB Fall 2010

Lec 10.21

Round-Robin Discussion

+ How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite («)?
» Get back FIFO
- What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo
each keystroke!
-In Jwac’rice need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is 0.1ms - 1ms
» Roughly 1% overhead due to context-switching

2/18/10 C€S162 ©UCB Fall 2010 Lec 10.23

Page 6

Example of RR with Time Quantum = 20

. Example H Process Burst Time
P
P, 8
P, 68
P, 24

- The Gantt chart is:

P, | Py | Py | Py | Py | Ps| Py| Py | Pyl Py

0O 20 28 48 68 88 108 112 125 145 153
P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=-88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 1043
+ Thus, Round-Robin Pros and Cons:

- Better for short jobs, Fair (+)

- Context-switching time adds up for long jobs (-)
2/18/10 €5162 ©UCB Fall 2010

- Waiting time for

Lec 10.22

Comparisons between FCFS and Round Robin

+ Assuming zero-cost context-switching time, is RR
always better than FCFS?
- Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

Job # | FIFO RR

+ Completion Times:

1 100 991
2 200 992
9 900 999

10 1000 1000
- Both RR and FCFS finish at the same time
- Average response time is much worse under RR!
» Bad when all jobs same length
* Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!
2/18/10 €S162 ©UCB Fall 2010 Lec 10.24

Earlier Example with Different Time Quantum

P P P P
Best FCFS: ‘ [BZi ‘ [2".:] ‘ [5:;] ‘ [6;]
0 8 32 85 153
Quantum P, P, P; P, Average

Best FCFS | 32 0 85 8 31

Q=1 84 22 85 57 62

. Q=5 82 20 85 58 611

1‘4{:";‘ Q-8 80 8 85 56 57%
Q=10 82 10 85 68 61%

Q=20 72 20 85 88 661

Worst FCFS| 68 145 0 121 831

Best FCFS | 85 8 153 32 69%
Q=1 137 30 153 81 1001

Completion Q=5 135 28 153 82 99%
Time Q=8 133 16 153 80 95%
Q=10 135 18 153 92 994
Q= 20 125 28 153 112 1041
) Worst FCFS | 121 153 68 145 1213
Discussion

+ SJF/SRTF are the best you can do at minimizing
average response time
- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)
- Since SRTF is always at least as good as SJF, focus
on SRTF
+ Comparison of SRTF with FCFS and RR
- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

2/18/10 C€S162 ©UCB Fall 2010 Lec 10.27

Page 7

What if we Knew the Future?

+ Could we always mirror best FCFS? &
+ Shortest Job First (SJF): r

- Run whatever job has the least amount of
computation to do

- Sometimes called "Shortest Time to
Completion First” (STCF)
+ Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)
* These can be applied either to a whole program or
the current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones

- Result is better average response time
2/18/10 €S162 ©UCB Fall 2010

Lec 10.26

Example to illustrate benefits of SRTF

AorB Cc

Cs Cs C's
. I/0 I/0 I/0
* Three jobs: /0 o U

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

- With FIFO:
- Once A or B get in, keep CPU for two weeks

- What about RR or SRTF?
- Easier to see with a timeline

2/18/10 €S162 ©UCB Fall 2010 Lec 10.28

SRTF Example continued:

Disk Utilization:

c A B 9/201 ~ 4.5%
|

S I

Cs RR 100ms time slice Disk Utilization:
I/0 ~90% but lots of
cABAB.. ¢ wakeups!
{17

1

-

RR 1ms time slice
C's C's
1/0 I/0

Disk Utilization:
C A A A 90%

— —
Cs C's
I/0 I/O
2/18/10

SRTF

€S162 ©UCB Fall 2010 Lec 10.29

Summary (Deadlock)

* Four conditions required for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait
» 3 set {T;, .., T,} of threads with a cyclic waiting pattern
+ Deadlock detection
- Attempts to assess whether waiting graph can ever
make progress
- Deadlock prevention

- Assess, for each allocation, whether it has the potential
to lead to deadlock

- Banker's algorithm gives one way to assess this

2/18/10 C€S162 ©UCB Fall 2010 Lec 10.31

Page 8

SRTF Further discussion

+ Starvation
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run
- Somehow need to predict future
- How can we do this?
- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long
- But: Even non-malicious users have trouble predicting
runtime of their jobs
- Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better

+ SRTF Pros & Cons
- Optimal (average response time) (+)
- Hard to predict future (-)

2/18/1-0 Unfﬁir (-) €S162 ©UCB Fall 2010
Summary (Scheduling)
+ Scheduling: selecting a waiting process from the ready

queue and allocating the CPU %o it
+ FCFS Scheduling:
- Run threads to completion in order of submission
- Pros: Simple
- Cons: Short jobs get stuck behind long ones
* Round-Robin Scheduling:
- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads
- Pros: Better for short jobs
- Cons: Poor when jobs are same length
+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation to
do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

2/18/10 €S162 ©UCB Fall 2010 Lec 10.32

