
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 10

Deadlock (cont’d)
Thread Scheduling

February 18, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 10.2 2/18/10 CS162 ©UCB Fall 2010

Review: Deadlock
•  Starvation vs. Deadlock

–  Starvation: thread waits indefinitely
–  Deadlock: circular waiting for resources
–  Deadlock⇒Starvation, but not other way around

•  Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
–  Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

–  Circular wait
» There exists a set {T1, …, Tn} of threads with a cyclic

waiting pattern

Lec 10.3 2/18/10 CS162 ©UCB Fall 2010

Review: Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

•  Recall:
–  request edge – directed edge T1 → Rj
–  assignment edge – directed edge Rj → Ti

Lec 10.4 2/18/10 CS162 ©UCB Fall 2010

Review: Methods for Handling Deadlocks

•  Allow system to enter deadlock and then recover
–  Requires deadlock detection algorithm
–  Some technique for selectively preempting resources
and/or terminating tasks

•  Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
–  Selectively deny those that might lead to deadlock

•  Ignore the problem and pretend that deadlocks
never occur in the system
–  used by most operating systems, including UNIX

Page 2

Lec 10.5 2/18/10 CS162 ©UCB Fall 2010

Goals for Today

•  Preventing Deadlock
•  Scheduling Policy goals
•  Policy Options
•  Implementation Considerations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 10.6 2/18/10 CS162 ©UCB Fall 2010

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
•  Only one of each type of resource ⇒ look for loops
•  More General Deadlock Detection Algorithm

–  Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
 [FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
 [AllocX]: Current resources held by thread X

–  See if tasks can eventually terminate on their own
 [Avail] = [FreeResources]

 Add all nodes to UNFINISHED
 do {

 done = true
 Foreach node in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

– Nodes left in UNFINISHED ⇒ deadlocked

Lec 10.7 2/18/10 CS162 ©UCB Fall 2010

Deadlock Detection Algorithm Example

T1

T2

T3

R2

R1

T4

[Available] = [0,0]
[RequestT2] = [0,0]
[RequestT2] <=

 [Available]

T1

T2

T3

R2

R1

T4

[Available] = [1,0]
[RequestT1] = [1,0]
[RequestT1] <=

 [Available]

T1

T2

T3

R2

R1

T4

[Available] = [1,1]
[RequestT3] = [0,1]
[RequestT3] <=

 [Available]

…

Lec 10.8 2/18/10 CS162 ©UCB Fall 2010

What to do when detect deadlock?
•  Terminate thread, force it to give up resources

–  In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

–  Shoot a dining philosopher
–  But, not always possible – killing a thread holding a
mutex leaves world inconsistent

•  Preempt resources without killing off thread
–  Take away resources from thread temporarily
–  Doesn’t always fit with semantics of computation

•  Roll back actions of deadlocked threads
–  Hit the rewind button on TiVo, pretend last few
minutes never happened

–  For bridge example, make one car roll backwards (may
require others behind him)

–  Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

Page 3

Lec 10.9 2/18/10 CS162 ©UCB Fall 2010

Techniques for Preventing Deadlock
•  Infinite resources

–  Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

–  Give illusion of infinite resources (e.g. virtual memory)
–  Examples:

» Bay bridge with 12,000 lanes. Never wait!
»  Infinite disk space (not realistic yet?)

•  No Sharing of resources (totally independent threads)
– Not very realistic

•  Don’t allow waiting
–  How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the
phone lines, but if blocked get busy signal.

–  Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

Lec 10.10 2/18/10 CS162 ©UCB Fall 2010

Techniques for Preventing Deadlock (con’t)

•  Make all threads request everything they’ll need at
the beginning.
–  Problem: Predicting future is hard, tend to over-
estimate resources

–  Example:
»  If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any

intersection between here and where you want to go;
only one car on the Bay Bridge at a time

•  Force all threads to request resources in a particular
order preventing any cyclic use of resources
–  Thus, preventing deadlock
–  Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
»  Keep from deadlock on freeways around SF by requiring

everyone to go clockwise

Lec 10.11 2/18/10 CS162 ©UCB Fall 2010

Review: Train Example (Wormhole-Routed Network)
•  Circular dependency (Deadlock!)

–  Each train wants to turn right
–  Blocked by other trains
–  Similar problem to multiprocessor networks

•  Fix? Imagine grid extends in all four directions
–  Force ordering of channels (tracks)

»  Protocol: Always go east-west first, then north-south
–  Called “dimension ordering” (X then Y)

Disallowed

By Rule

Lec 10.12 2/18/10 CS162 ©UCB Fall 2010

•  Toward right idea:
–  State maximum resource needs in advance
–  Allow particular thread to proceed if:

 (available resources - #requested) ≥ max
remaining that might be needed by any thread

•  Banker’s algorithm (less conservative):
–  Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail])
Grant request if result is deadlock free (conservative!)

»  Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

–  Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Page 4

Lec 10.13 2/18/10 CS162 ©UCB Fall 2010

Banker’s Algorithm Example

•  Banker’s algorithm with dining philosophers
–  “Safe” (won’t cause deadlock) if when try to grab
chopstick either:

» Not last chopstick
»  Is last chopstick but someone will have

two afterwards
– What if k-handed philosophers? Don’t allow if:

»  It’s the last one, no one would have k
»  It’s 2nd to last, and no one would have k-1
»  It’s 3rd to last, and no one would have k-2
» … Lec 10.14 2/18/10 CS162 ©UCB Fall 2010

Administrivia

•  Project 1 code due this Monday (2/22)

•  Autograder will be available by tomorrow morning

•  Midterm coming up in two 1/2 weeks
–  Tuesday, 3/9, 3:30 – 6:30 (Requested this room)
–  Should be 2 hour exam with extra time
–  Closed book, one page of hand-written notes (both sides)

•  Midterm Topics
–  Everything up to previous Thursday, 3/5
–  History, Concurrency, Multithreading, Synchronization,

Protection/Address Spaces

Lec 10.15 2/18/10 CS162 ©UCB Fall 2010

CPU Scheduling

•  Earlier, we talked about the life-cycle of a thread
–  Active threads work their way from Ready queue to
Running to various waiting queues.

•  Question: How is the OS to decide which of several
threads to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

•  Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 10.16 2/18/10 CS162 ©UCB Fall 2010

Scheduling Assumptions
•  CPU scheduling big area of research in early 70’s
•  Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
–  Programs are independent

•  Clearly, these are unrealistic but they simplify the
problem so it can be solved
–  For instance: is “fair” about fairness among users or
programs?

»  If I run one compilation job and you run five, you get five
times as much CPU on many operating systems

•  The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

Page 5

Lec 10.17 2/18/10 CS162 ©UCB Fall 2010

Assumption: CPU Bursts

•  Execution model: programs alternate between bursts of
CPU and I/O
–  Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

–  Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 10.18 2/18/10 CS162 ©UCB Fall 2010

Scheduling Policy Goals/Criteria
•  Minimize Response Time

– Minimize elapsed time to do an operation (or job)
–  Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

•  Maximize Throughput
– Maximize operations (or jobs) per second
–  Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

–  Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

•  Fairness
–  Share CPU among users in some equitable way
–  Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 10.19 2/18/10 CS162 ©UCB Fall 2010

First-Come, First-Served (FCFS) Scheduling
•  First-Come, First-Served (FCFS)

–  Also “First In, First Out” (FIFO) or “Run until done”
»  In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

•  Example: Process Burst Time
 P1 24
 P2 3
 P3 3

–  Suppose processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is:

–  Waiting time for P1 = 0; P2 = 24; P3 = 27
–  Average waiting time: (0 + 24 + 27)/3 = 17
–  Average Completion time: (24 + 27 + 30)/3 = 27

•  Convoy effect: short process behind long process

P1" P2" P3"

24" 27" 30"0"

Lec 10.20 2/18/10 CS162 ©UCB Fall 2010

FCFS Scheduling (Cont.)
•  Example continued:

–  Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

–  Waiting time for P1 = 6; P2 = 0; P3 = 3
–  Average waiting time: (6 + 0 + 3)/3 = 3
–  Average Completion time: (3 + 6 + 30)/3 = 13

•  In second case:
–  average waiting time is much better (before it was 17)
–  Average completion time is better (before it was 27)

•  FIFO Pros and Cons:
–  Simple (+)
–  Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of
small items

P1"P3"P2"

6"3" 30"0"

Page 6

Lec 10.21 2/18/10 CS162 ©UCB Fall 2010

Round Robin (RR)
•  FCFS Scheme: Potentially bad for short jobs!

–  Depends on submit order
–  If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

•  Round Robin Scheme
–  Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

–  After quantum expires, the process is preempted
and added to the end of the ready queue.

–  n processes in ready queue and time quantum is q ⇒
» Each process gets 1/n of the CPU time
»  In chunks of at most q time units
» No process waits more than (n-1)q time units

•  Performance
–  q large ⇒ FCFS
–  q small ⇒ Interleaved (really small ⇒ hyperthreading?)
–  q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Lec 10.22 2/18/10 CS162 ©UCB Fall 2010

Example of RR with Time Quantum = 20
•  Example: Process Burst Time

 P1 53
 P2 8
 P3 68
 P4 24

–  The Gantt chart is:

–  Waiting time for P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

–  Average waiting time = (72+20+85+88)/4=66¼
–  Average completion time = (125+28+153+112)/4 = 104½

•  Thus, Round-Robin Pros and Cons:
–  Better for short jobs, Fair (+)
–  Context-switching time adds up for long jobs (-)

P1" P2" P3" P4" P1" P3" P4" P1" P3" P3"

0" 20" 28" 48" 68" 88" 108" 112" 125" 145" 153"

Lec 10.23 2/18/10 CS162 ©UCB Fall 2010

Round-Robin Discussion
•  How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite (∞)?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

•  Actual choices of timeslice:
–  Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
–  In practice, need to balance short-job performance
and long-job throughput:

» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.24 2/18/10 CS162 ©UCB Fall 2010

Comparisons between FCFS and Round Robin
•  Assuming zero-cost context-switching time, is RR

always better than FCFS?
•  Simple example: 10 jobs, each take 100s of CPU time

 RR scheduler quantum of 1s
 All jobs start at the same time

•  Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
•  Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Page 7

Lec 10.25 2/18/10 CS162 ©UCB Fall 2010

Quantum

Completion
Time

Wait
Time

Average P4 P3 P2 P1

Earlier Example with Different Time Quantum

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 8" 32" 85" 153"

Best FCFS:

62 57 85 22 84 Q = 1

104½ 112 153 28 125 Q = 20

100½ 81 153 30 137 Q = 1

66¼ 88 85 20 72 Q = 20

31¼ 8 85 0 32 Best FCFS

121¾ 145 68 153 121 Worst FCFS

69½ 32 153 8 85 Best FCFS
83½ 121 0 145 68 Worst FCFS

95½ 80 153 16 133 Q = 8

57¼ 56 85 8 80 Q = 8

99½ 92 153 18 135 Q = 10

99½ 82 153 28 135 Q = 5

61¼ 68 85 10 82 Q = 10

61¼ 58 85 20 82 Q = 5

Lec 10.26 2/18/10 CS162 ©UCB Fall 2010

What if we Knew the Future?

•  Could we always mirror best FCFS?
•  Shortest Job First (SJF):

–  Run whatever job has the least amount of
computation to do

–  Sometimes called “Shortest Time to
Completion First” (STCF)

•  Shortest Remaining Time First (SRTF):
–  Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

–  Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

•  These can be applied either to a whole program or
the current CPU burst of each program
–  Idea is to get short jobs out of the system
–  Big effect on short jobs, only small effect on long ones
–  Result is better average response time

Lec 10.27 2/18/10 CS162 ©UCB Fall 2010

Discussion

•  SJF/SRTF are the best you can do at minimizing
average response time
–  Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

–  Since SRTF is always at least as good as SJF, focus
on SRTF

•  Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 10.28 2/18/10 CS162 ©UCB Fall 2010

Example to illustrate benefits of SRTF

•  Three jobs:
–  A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

–  If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

•  With FIFO:
– Once A or B get in, keep CPU for two weeks

•  What about RR or SRTF?
–  Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Page 8

Lec 10.29 2/18/10 CS162 ©UCB Fall 2010

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

C A B C

RR 100ms time slice

C’s
I/O

A C

C’s
I/O

A A

SRTF

Disk Utilization:
~90% but lots of

wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 10.30 2/18/10 CS162 ©UCB Fall 2010

SRTF Further discussion
•  Starvation

–  SRTF can lead to starvation if many small jobs!
–  Large jobs never get to run

•  Somehow need to predict future
–  How can we do this?
–  Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

–  But: Even non-malicious users have trouble predicting
runtime of their jobs

•  Bottom line, can’t really know how long job will take
–  However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
•  SRTF Pros & Cons

– Optimal (average response time) (+)
–  Hard to predict future (-)
–  Unfair (-)

Lec 10.31 2/18/10 CS162 ©UCB Fall 2010

Summary (Deadlock)
•  Four conditions required for deadlocks

– Mutual exclusion
» Only one thread at a time can use a resource

–  Hold and wait
» Thread holding at least one resource is waiting to acquire

additional resources held by other threads
– No preemption

» Resources are released only voluntarily by the threads
–  Circular wait

»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern
•  Deadlock detection

–  Attempts to assess whether waiting graph can ever
make progress

•  Deadlock prevention
–  Assess, for each allocation, whether it has the potential
to lead to deadlock

–  Banker’s algorithm gives one way to assess this

Lec 10.32 2/18/10 CS162 ©UCB Fall 2010

Summary (Scheduling)
•  Scheduling: selecting a waiting process from the ready

queue and allocating the CPU to it
•  FCFS Scheduling:

–  Run threads to completion in order of submission
–  Pros: Simple
–  Cons: Short jobs get stuck behind long ones

•  Round-Robin Scheduling:
–  Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

–  Pros: Better for short jobs
–  Cons: Poor when jobs are same length

•  Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
–  Run whatever job has the least amount of computation to
do/least remaining amount of computation to do

–  Pros: Optimal (average response time)
–  Cons: Hard to predict future, Unfair

