Review: Single-Level Translation
Virtual Address: Offset
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Address Translation (con't) ges = Error P22 Error
- Low translation overhead
Caches and TLBs

- Simplicity
March 2, 2010 + Disadvantages
. - Large page tables
R » E.g., 32b address space, 4KB pages > up to 210 =
http://inst.eecs.berkeley.edu/~cs162 1mil page entries for each process
- Expensive to share memory

» E.g., 4KB pages, want to share 100MB - need to
update 25,000 entries in page table

3/2/10 €S162 ®UCB Spring 2010 Lec 13.2
Review: Multi-level Translation Review: Two-level page table
* What about a free of fables? 10 bits_ 10 bits _ 12 bits__ Address: Offset
- Lowest level page table=>memory still allocated with bitmap Virtual Offset
- Higher levels often segmented Address: | Offset |
+ Could have any number of levels. Example (top segment): KB
Virtual Offset
Address: PageTablePir
page #0 | VR
BaseO[ LimitOH7 | age z; V.R __y- Offset |
Basel [LiAfitl [V page R, s [
BaseZ | Limi bage #3 VR W Physical Address
Base3 | Limit3{N page #4 | N £p b|—>4bytes<—
Base4|Limit4 + Tree of Page Tables
dull age #5 V.R,W| heck Pert rage ! . L
Baseh Limit s - ) - Tables fixed size (1024 en'trlles)
ase! imi - _ . . .
scerltm? V] () —Agces e G ceniext,swich; save single
. - Sometimes, top-level page tables
* What must be saved/restored on context switch? cath\ad 'r'?ﬁr'éctog'ies" (Ir‘:tegl)
- Contents of top-level segment registers (for this example) - Each entry called a (surprisel)
- Pointer to top-level table (page table) Page Table Entry (PTE) — 4 bytes +—
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Goals for Today

+ Finish discussion of both Address Translation and
Protection

+ Caching and TLBs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
3/2/10
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Examples of how to use a PTE

How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
Us%ge Example: Demand Paging
- Keep only active pages in memory
- Place others on disk and mark their PTEs invalid
Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’'s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage Esxample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background
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What is in a PTE?

* What is in a Page Table Entry (or PTE)?

- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only

+ Example: Intel x86 architecture PTE:

- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”
Page Frame Number Free pP]
(Physical Page Number) (0S) o[L[D]A 8|§ Upwir
31-12 11-9 876543210
Present (same as “valid” bit in other architectures)
Writeable
User accessible
: Page write transparent: external cache write-through
: Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently
Dirty (PTE only): page has been modified recently
L=1=4MB page (directory only).

Bottom 22 bifs of virtual address serve as offset
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How is the translation accomplished?

Virtual
Addresses
—p

Physical
Addresses

MMU

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes ﬁage table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture
- Pros: Relatively fast (but still many memory accesses!)
- Cons: Inflexible, Complex hardware

+ Another possibility: Software

- Each traversal done in software
- Pros: Very flexible
- Cons: Every translation must invoke Fault!

: In fact, need way to cache translations for either case!
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Dual-Mode Operation

+ Can Application modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
*+ To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
+ Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)

- Typical OS kernels on Intel processors only use PLO
(“user”) and PL3 (“kernel”)
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How to get from Kernel—User

* What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
3/2/10 CS162 ®UCB Spring 2010 Lec 13.11
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For Protection, Lock User-Programs in Asylum
- Idea: Lock user programs in padded cell
with no exit or sﬁarp objects

- Cannot change mode to kernel mode

- User cannot modify page table mapping

- Limited access to memory: cannot
adversely affect other processes

» Side-effect: Limited access to

memorz-mapped I/0 operations
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this?

- How do programs interact?

- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell
» User— OS (user — kernel mode): getting out of cell
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User—Kernel (System Call)

+ Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

user process

user mode
(mode bit = 1)]

| user process executing H calls system call ‘ ‘ return from system call ‘

\ /

7
return
mode bit = 1

execute system call

+ System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

trap
Lt mode bit = 0
kernel mode
(mode bit = 0)}
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System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
+ Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
* What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
+ System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translated
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
3/2/10 €S162 ©UCB Spring 2010
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Closing thought: Protection without Hardware

+ Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict programming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guaran'ree safe behavior

(loads and stores r‘ecomgile on flz to check bounds)
CS162 ©UCB Spring 2010 Lec’13.15
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User—Kernel (Exceptions: Traps and Interrupts)
+ A ’sysfem call insfrucfion causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
+ Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
+ Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, efc.

* Actual handler prically saves registers, other CPU
3/2/1%““‘3' and switches 1&215%‘&955&'\.9 1
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Administrivia

* Midterm in 1 week:
- Monday, 3/9, 3:30-6:30pm, (277 Cory Hall - this room!)
- Should be 2 hour exam with extra time
- Closed book, one page of hand-written notes (both sides)
* No class on day of Midterm
- Extra Office Hours: Next tuesday 1:00-3:00
* Midterm Topics
- Topics: Everything up to Thursday 3/4

- History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces, TLBs

* Make sure to fill out Group Evaluations!
* Project 2
- Initial Design Document due Thursday 3/4
- Look at the lecture schedule to keep up with due dates!
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Caching Concept

Cache: a repository for copies that can be accessed
more quickly than the original

- Make frequent case fast and infrequent case less dominant
Caching underlies many of the techniques that are used
today Yo make computers fast

- Can cache: memory locations, address translations, pages,

file blocks, file names, network routes, etc..

Only good if:

- Frequent case frequent enough and

- Infrequent case not too expensive
Important measure: Average Access time =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Address: Offset

page #0 | V.R
s g7 [poos #1 [ VR |, [T o]
Basel | L v page #2"V.R, "
BaseZ| Limi page #3 V.R.W Physical Address
Base3 | Limit3{N page #4 | N
Base4 | Limit4
Base5 | Limit5 [N\ page #5 V.R.W heck Per
Base6 | Limité |N !
Base7 [Limit7 |V Access Access

Error Error

Another Major Reason to Deal with Caching

Virtual

+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!

+ Even worse: What if we are using caching to make

memory access faster than DRAM access?
- Solution? Cache translations!
- Translation Cache: TLB g‘Tranquﬁon Lookaside Buffer"')9
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Why Bother with Caching?

Processor-DRAM Memory Gap (latency)

. Proc
1000 “Moore's Law" - ZF())"/O/yp_
8 (really Joy's Law) (2X/1.5yr)
S100| o 7 Processor- Memory
E Performance Gap:
£ 10 " . . |(grows 50% / year)
S “Less’ Law?" ~— DRAM
o o 9%/yr.
1"'§§§“““““““ (ZX/IO
O M IO ONODRNO'='NMTIOOIND' ND
BE3EITERARRINRIRANREE
Time
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Why Does Caching Help? Locality!

Probability
of reference

.

0 Address Space 2n-1

 Temporal Locality (Locality in Time):

- Keep recently accessed data items closer to processor
+ Spatial Locality (Locality in Space):

- Move contiguous blocks to the upper levels

Lower Level|

To Processor | Upper Level Memory
Memory
Blk X
From Processor BIKY

Lec 13.20
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A Summary on Sources of Cache Misses

Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

+ Compulsory (cold start or process migration, first
reference): first access to a block
- "Cold” fact of life: not a whole lot you can do about it
- Note: If you are going to run “billions” of instruction,

Compulsory Misses are insignificant
Processor . CGPOC I'fy .
- Cache cannot contain all blocks access by the program
Control q . . .
Secondary| |Memaary - Solution: increase cache size
< d . Storage Sflc:rage . C fl + " H .
= S T [T isk) (Tape) onflict (collision):
Q €mo . .
Datapath(iZ | | & 2 Cache (DRAI\I/?; - Multiple memory locations mapped
s|[|F5 (SRAM) to the same cache location
- Solution 1: increase cache size
Speed (ns): 1s 10s-100s 100s 10.%%00%) 1o,oo<(>,l%oo,oo§>s - Solution 2: increase associativity
s ms, s secC
Size (bytes): 100s Ks-Ms M 6 s + Coherence (Invalidation): other process (e.g., I/0)
] uopdafes memory )
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How is a Block found in a Cache? Review: Direct Mapped Cache
- Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tang
I Block Address — I <l | - The lowest M bits are the Byte Select (Block Size = 2M)
12 — = . Exam(rle: 1 KB Direct Mapped Cache with 32 B Blocks
%',_/\__l - Index chooses potential block
- Tag checked to verify block
Set Select - Byte select chooses byte within block
31 9 4 0
Data Select I Cache Tag l Cache Index l Byte Select I
+ Index Used to Lookup Candidates in Cache Ex: 0550 B ot Ex: 0x00
- Index iden*ifies the set Valid Bit Cache Tag Cache Data
+ Tag used to identify actual copy | | Ll Byte.31l..oo.| Byte.1..| Bytd0. L0
- If no candidates match, then declare cache miss ] (B8] [Bve B Byte 12 i
+ Block is minimum quantum of caching 3
- Data select field used to select data within block
- Many caching applications don't have data select field
Byte 1023 °* _ Byte992]31
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel

- Data is selected based on the tag result
31 8

4 0
I Cache Tag I Cache Index I Byte Select |
|
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

3/2/10

it | [ ] cache Block bec 1325

Where does a Block Get Placed in a Cache?
+ Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:

block 12 can go block 12 can go block 12 can go

only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3
3/2/10 C€S162 ©UCB Spring 2010 Lec 13.27
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Review: Fully Associative Cache
* Fully Associative: Every block can hold any line
- Address does not include a cache index
- Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
- We need N 27-bit comparators

- Still have byte select to choose from within block
31

4 0
[ Cache Tag (27 bits long) I Byte Select I
Ex: 0x01
Cache Tag Valid Bit Cache Data
——0— Byte31] °* |Bytel | Byte 0
—— Byte 63| ** |Byte 33| Byte 32
_.@._
_.@._
_.@._
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Review: Which block should be replaced on a miss?

+ Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-wa 8-way
Size  LRU Random LRU Random LRU Random
16 KB 52% 57% 4.7% 5.3% 4.4%5.0%
64KB 19% 20% 15% 1.7% 1.4%1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12%1.12%
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Review: What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

+ Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced

- Question is block clean or dirty?
* Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered
- WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data

3/2/10
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What Actually Happens on a TLB Miss?

* Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes P?e Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system
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Caching Applied to Address Translation
O\

\Physical
Add

> rﬁs; Physical
Memory

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of fime on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference

- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?

- Sure: multiple levels at different sizes/speeds
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What happens on a Context Switch?
* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

* Options?
- Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
- Include ProcessID in TLB

» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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Summary #1/2

* The Principle of Locality:

- Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
- Compulsory Misses: sad facts of life. Example: cold start
misses.
- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices

+ Cache Organizations:
- Direct Mapped: single block per set
- Set associative: more than one block per set
- Fully associative: all entries equivalent
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Summary #2/2: Translation Caching (TLB)

* PTE: Page Table Entries

- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

+ A cache of translations called a “Translation Lookaside

Buffer” (TLB)
- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID

+ On TLB miss, page table must be traversed

- If located PTE is invalid, cause Page Fault

+ On context switch/change in page table

- TLB entries must be invalidated somehow
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