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Review: Single-Level Translation 

•  Advantages 
–  Low translation overhead 
–  Simplicity  

•  Disadvantages 
–  Large page tables 

» E.g., 32b address space, 4KB pages  up to 210 = 
1mil page entries for each process 

–  Expensive to share memory 
» E.g., 4KB pages, want to share 100MB  need to 

update 25,000 entries in page table   
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•  What about a tree of tables? 
–  Lowest level page table⇒memory still allocated with bitmap 
–  Higher levels often segmented 

•  Could have any number of levels. Example (top segment): 

•  What must be saved/restored on context switch? 
–  Contents of top-level segment registers (for this example) 
–  Pointer to top-level table (page table) 
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Physical 
Address: Offset Physical 

Page # 

4KB 

Review: Two-level page table 
10 bits 10 bits 12 bits 

Virtual  
Address: Offset Virtual 

P2 index 
Virtual 

P1 index 

4 bytes 

PageTablePtr 

•  Tree of Page Tables 
•  Tables fixed size (1024 entries) 

– On context-switch: save single 
PageTablePtr register 

•  Sometimes, top-level page tables 
called “directories” (Intel) 

•  Each entry called a (surprise!) 
Page Table Entry (PTE) 4 bytes 
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Goals for Today 

•  Finish discussion of both Address Translation and 
Protection 

•  Caching and TLBs 

Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne  
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What is in a PTE? 
•  What is in a Page Table Entry (or PTE)? 

–  Pointer to next-level page table or to actual page 
–  Permission bits: valid, read-only, read-write, write-only 

•  Example: Intel x86 architecture PTE: 
–  Address same format previous slide (10, 10, 12-bit offset) 
–  Intermediate page tables called “Directories” 

  P:  Present (same as “valid” bit in other architectures)  
  W:  Writeable 
  U:  User accessible 
  PWT: Page write transparent: external cache write-through 
  PCD:  Page cache disabled (page cannot be cached) 
  A:  Accessed: page has been accessed recently 
  D:  Dirty (PTE only): page has been modified recently 
  L:  L=1⇒4MB page (directory only). 

  Bottom 22 bits of virtual address serve as offset 

Page Frame Number 
(Physical Page Number) 

Free 
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PCD
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Examples of how to use a PTE 
•  How do we use the PTE? 

–  Invalid PTE can imply different things: 
» Region of address space is actually invalid or  
»  Page/directory is just somewhere else than memory 

–  Validity checked first 
•  Usage Example: Demand Paging 

–  Keep only active pages in memory 
–  Place others on disk and mark their PTEs invalid 

•  Usage Example: Copy on Write 
–  UNIX fork gives copy of parent address space to child 

» Address spaces disconnected after child created 
–  How to do this cheaply?   

» Make copy of parent’s page tables (point at same memory) 
» Mark entries in both sets of page tables as read-only 
»  Page fault on write creates two copies  

•  Usage Example: Zero Fill On Demand 
– New data pages must carry no information (say be zeroed) 
– Mark PTEs as invalid; page fault on use gets zeroed page 
– Often, OS creates zeroed pages in background 
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How is the translation accomplished? 

•  What, exactly happens inside MMU? 
•  One possibility: Hardware Tree Traversal 

–  For each virtual address, takes page table base pointer 
and traverses the page table in hardware 

–  Generates a “Page Fault” if it encounters invalid PTE 
»  Fault handler will decide what to do 
» More on this next lecture 

–  Pros: Relatively fast (but still many memory accesses!) 
–  Cons: Inflexible, Complex hardware 

•  Another possibility: Software 
–  Each traversal done in software 
–  Pros: Very flexible 
–  Cons: Every translation must invoke Fault! 

•  In fact, need way to cache translations for either case! 

CPU MMU 
Virtual 

Addresses 
Physical 

Addresses 
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Dual-Mode Operation 

•  Can Application modify its own translation tables? 
–  If it could, could get access to all of physical memory 
–  Has to be restricted somehow 

•  To Assist with Protection, Hardware provides at 
least two modes (Dual-Mode Operation): 
–  “Kernel” mode (or “supervisor” or “protected”) 
–  “User” mode (Normal program mode) 
– Mode set with bits in special control register only 
accessible in kernel-mode 

•  Intel processor actually has four “rings” of 
protection: 
–  PL (Priviledge Level) from 0 – 3 

»  PL0 has full access, PL3 has least 
–  Privilege Level set in code segment descriptor (CS) 
–  Typical OS kernels on Intel processors only use PL0 
(“user”) and PL3 (“kernel”) 
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For Protection, Lock User-Programs in Asylum 
•  Idea: Lock user programs in padded cell  

with no exit or sharp objects 
–  Cannot change mode to kernel mode 
–  User cannot modify page table mapping  
–  Limited access to memory: cannot  
adversely affect other processes 

» Side-effect: Limited access to  
memory-mapped I/O operations  
(I/O that occurs by reading/writing memory locations) 

–  Limited access to interrupt controller  
•  A couple of issues 

–  How to share CPU between kernel and user programs?  
»  Kinda like both the inmates and the warden in asylum are 

the same person.  How do you manage this? 
–  How do programs interact? 
–  How does one switch between kernel and user modes? 

» OS → user (kernel → user mode): getting into cell 
» User→ OS (user → kernel mode): getting out of cell 
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How to get from Kernel→User 
•  What does the kernel do to create a new user 

process? 
–  Allocate and initialize address-space control block 
–  Read program off disk and store in memory 
–  Allocate and initialize translation table  

»  Point at code in memory so program can execute 
»  Possibly point at statically initialized data 

–  Run Program: 
» Set machine registers 
» Set hardware pointer to translation table 
» Set processor status word for user mode 
» Jump to start of program 

•  How does kernel switch between processes? 
–  Same saving/restoring of registers as before 
–  Save/restore PSL (hardware pointer to translation table) 
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User→Kernel (System Call) 
•  Can’t let inmate (user) get out of padded cell on own 

– Would defeat purpose of protection! 
–  So, how does the user program get back into kernel? 

•  System call: Voluntary procedure call into kernel 
–  Hardware for controlled User→Kernel transition 
–  Can any kernel routine be called? 

» No!  Only specific ones. 
–  System call ID encoded into system call instruction 

»  Index forces well-defined interface with kernel 
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System Call Continued 
•  What are some system calls? 

–  I/O: open, close, read, write, lseek 
–  Files: delete, mkdir, rmdir, truncate, chown, chgrp, .. 
–  Process: fork, exit, wait (like join) 
– Network: socket create, set options 

•  Are system calls constant across operating systems? 
– Not entirely, but there are lots of commonalities 
–  Also some standardization attempts (POSIX) 

•  What happens at beginning of system call? 
» On entry to kernel, sets system to kernel mode 
» Handler address fetched from table/Handler started 

•  System Call argument passing: 
–  In registers (not very much can be passed) 
– Write into user memory, kernel copies into kernel mem 

» User addresses must be translated 
»  Kernel has different view of memory than user 

–  Every Argument must be explicitly checked! 
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User→Kernel (Exceptions: Traps and Interrupts) 
•  A system call instruction causes a synchronous 

exception (or “trap”) 
–  In fact, often called a software “trap” instruction 

•  Other sources of Synchronous Exceptions: 
–  Divide by zero, Illegal instruction, Bus error (bad 
address, e.g. unaligned access) 

–  Segmentation Fault (address out of range) 
–  Page Fault (for illusion of infinite-sized memory) 

•  Interrupts are Asynchronous Exceptions 
–  Examples: timer, disk ready, network, etc…. 
–  Interrupts can be disabled, traps cannot! 

•  On system call, exception, or interrupt: 
–  Hardware enters kernel mode with interrupts disabled 
–  Saves PC, then jumps to appropriate handler in kernel 
–  For some processors (x86), processor also saves 
registers, changes stack, etc. 

•  Actual handler typically saves registers, other CPU 
state, and switches to kernel stack 
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Closing thought: Protection without Hardware 
•  Does protection require hardware support for 

translation and dual-mode behavior? 
– No: Normally use hardware, but anything you can do in 
hardware can also do in software (possibly expensive) 

•  Protection via Strong Typing 
–  Restrict programming language so that you can’t express 
program that would trash another program 

–  Loader needs to make sure that program produced by 
valid compiler or all bets are off 

–  Example languages: LISP, Ada, Modula-3 and Java 
•  Protection via software fault isolation: 

–  Language independent approach: have compiler generate 
object code that provably can’t step out of bounds 

» Compiler puts in checks for every “dangerous” operation 
(loads, stores, etc). Again, need special loader. 

» Alternative, compiler generates “proof” that code cannot 
do certain things (Proof Carrying Code) 

– Or: use virtual machine to guarantee safe behavior 
(loads and stores recompiled on fly to check bounds) 
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Administrivia 

•  Midterm in 1 week: 
– Monday, 3/9, 3:30-6:30pm, (277 Cory Hall - this room!) 
–  Should be 2 hour exam with extra time 
–  Closed book, one page of hand-written notes (both sides) 

•  No class on day of Midterm 
–  Extra Office Hours: Next tuesday 1:00-3:00 

•  Midterm Topics 
–  Topics: Everything up to Thursday 3/4 
–  History, Concurrency, Multithreading, Synchronization, 
Protection/Address Spaces, TLBs 

•  Make sure to fill out Group Evaluations! 
•  Project 2  

–  Initial Design Document due Thursday 3/4 
–  Look at the lecture schedule to keep up with due dates! 
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Caching Concept 

•  Cache: a repository for copies that can be accessed 
more quickly than the original 
– Make frequent case fast and infrequent case less dominant 

•  Caching underlies many of the techniques that are used 
today to make computers fast 
–  Can cache: memory locations, address translations, pages, 
file blocks, file names, network routes, etc… 

•  Only good if: 
–  Frequent case frequent enough and 
–  Infrequent case not too expensive 

•  Important measure: Average Access time =  
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time) 
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Why Bother with Caching? 

“Less’ Law?” 
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•  Cannot afford to translate on every access 
–  At least three DRAM accesses per actual DRAM access 
– Or: perhaps I/O if page table partially on disk! 

•  Even worse: What if we are using caching to make 
memory access faster than DRAM access? 

•  Solution? Cache translations! 
–  Translation Cache: TLB (“Translation Lookaside Buffer”) 

Another Major Reason to Deal with Caching 
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Why Does Caching Help? Locality! 

•  Temporal Locality (Locality in Time): 
–  Keep recently accessed data items closer to processor 

•  Spatial Locality (Locality in Space): 
– Move contiguous blocks to the upper levels  

Address Space 0 2n - 1 

Probability 
of reference 

Lower Level 
Memory Upper Level 

Memory 
To Processor 

From Processor 
Blk X 

Blk Y 
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Memory Hierarchy of a Modern Computer System 
•  Take advantage of the principle of locality to: 

–  Present as much memory as in the cheapest technology 
–  Provide access at speed offered by the fastest technology 
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•  Compulsory (cold start or process migration, first 
reference): first access to a block 
–  “Cold” fact of life: not a whole lot you can do about it 
– Note: If you are going to run “billions” of instruction, 
Compulsory Misses are insignificant 

•  Capacity: 
–  Cache cannot contain all blocks access by the program 
–  Solution: increase cache size 

•  Conflict (collision): 
– Multiple  memory locations  mapped 
to the same cache location 

–  Solution 1: increase  cache size 
–  Solution 2: increase associativity 

•  Coherence (Invalidation): other process (e.g., I/O) 
updates memory  

A Summary on Sources of Cache Misses 
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•  Index Used to Lookup Candidates in Cache 
–  Index identifies the set  

•  Tag used to identify actual copy 
–  If no candidates match, then declare cache miss 

•  Block is minimum quantum of caching 
–  Data select field used to select data within block 
– Many caching applications don’t have data select field 

How is a Block found in a Cache? 

Block 
offset 

Block Address 
Tag Index 

Set Select 

Data Select 

Lec 13.24 3/2/10 CS162 ©UCB Spring 2010 

: 

0x50 

Valid Bit 

: 

 Cache Tag 

Byte 32 
0 
1 
2 
3 

: 

 Cache Data 
Byte 0 Byte 1 Byte 31 : 

Byte 33 Byte 63 : 

Byte 992 Byte 1023 : 31 

Review: Direct Mapped Cache 
•  Direct Mapped 2N byte cache: 

–  The uppermost (32 - N) bits are always the Cache Tag 
–  The lowest M bits are the Byte Select (Block Size = 2M) 

•  Example: 1 KB Direct Mapped Cache with 32 B Blocks 
–  Index chooses potential block 
–  Tag checked to verify block 
–  Byte select chooses byte within block 

Ex: 0x50 Ex: 0x00 
Cache Index 

0 4 31 
Cache Tag Byte Select 

9 

Ex: 0x01 
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Cache Index 
0 4 31 

Cache Tag Byte Select 
8 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Mux 0 1 Sel1 Sel0 

OR 

Hit 

Review: Set Associative Cache 
•  N-way set associative: N entries per Cache Index 

– N direct mapped caches operates in parallel 
•  Example: Two-way set associative cache 

–  Cache Index selects a “set” from the cache 
–  Two tags in the set are compared to input in parallel 
–  Data is selected based on the tag result 

Compare Compare 

Cache Block 
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Review: Fully Associative Cache 
•  Fully Associative: Every block can hold any line 

–  Address does not include a cache index 
–  Compare Cache Tags of all Cache Entries in Parallel 

•  Example: Block Size=32B blocks 
– We need N 27-bit comparators 
–  Still have byte select to choose from within block 

: 

 Cache Data 
Byte 0 Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Valid Bit 

: : 

 Cache Tag 

0 4 
Cache Tag (27 bits long) Byte Select 

31 

= 

= 
= 

= 

= 

Ex: 0x01 
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• Example: Block 12 placed in 8 block cache 

0 1 2 3 4 5 6 7 Block 
no. 

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8) 

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4) 

0 1 2 3 4 5 6 7 Block 
no. 

Set 
0 

Set 
1 

Set 
2 

Set 
3 

Fully associative: 
block 12 can go 
anywhere 

0 1 2 3 4 5 6 7 Block 
no. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

32-Block Address Space: 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block 
no. 

Where does a Block Get Placed in a Cache? 
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•  Easy for Direct Mapped: Only one possibility 
•  Set Associative or Fully Associative: 

–  Random 
–  LRU (Least Recently Used) 

             2-way         4-way           8-way 
Size  LRU  Random  LRU  Random   LRU  Random 

 16 KB  5.2%  5.7%     4.7%  5.3%  4.4% 5.0% 
 64 KB  1.9%  2.0%     1.5%  1.7%  1.4% 1.5% 
 256 KB  1.15%  1.17%    1.13%  1.13%  1.12% 1.12% 

Review: Which block should be replaced on a miss? 
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•  Write through: The information is written to both the 
block in the cache and to the block in the lower-level 
memory 

•  Write back: The information is written only to the 
block in the cache.  
– Modified cache block is written to main memory only 
when it is replaced 

– Question is block clean or dirty? 
•  Pros and Cons of each? 

– WT:  
»  PRO: read misses cannot result in writes 
» CON: Processor held up on writes unless writes buffered 

– WB:  
»  PRO: repeated writes not sent to DRAM 

  processor not held up on writes 
» CON: More complex 

  Read miss may require writeback of dirty data 

Review: What happens on a write? 
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Caching Applied to Address Translation 

•  Question is one of page locality: does it exist? 
–  Instruction accesses spend a lot of time on the same 
page (since accesses sequential) 

–  Stack accesses have definite locality of reference 
–  Data accesses have less page locality, but still some… 

•  Can we have a TLB hierarchy? 
–  Sure: multiple levels at different sizes/speeds 

Data Read or Write 
(untranslated) 

CPU Physical 
Memory 

TLB 

Translate 
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Virtual 
Address Physical 

Address 
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What Actually Happens on a TLB Miss? 
•  Hardware traversed page tables: 

– On TLB miss, hardware in MMU looks at current page 
table to fill TLB (may walk multiple levels) 

»  If PTE valid, hardware fills TLB and processor never knows 
»  If PTE marked as invalid, causes Page Fault, after which 

kernel decides what to do afterwards 
•  Software traversed Page tables (like MIPS) 

– On TLB miss, processor receives TLB fault 
–  Kernel traverses page table to find PTE 

»  If PTE valid, fills TLB and returns from fault 
»  If PTE marked as invalid, internally calls Page Fault handler 

•  Most chip sets provide hardware traversal 
– Modern operating systems tend to have more TLB faults 
since they use translation for many things 

–  Examples:  
»  shared segments 
»  user-level portions of an operating system 
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What happens on a Context Switch? 

•  Need to do something, since TLBs map virtual 
addresses to physical addresses 
–  Address Space just changed, so TLB entries no 
longer valid! 

•  Options? 
–  Invalidate TLB: simple but might be expensive 

» What if switching frequently between processes? 
–  Include ProcessID in TLB 

» This is an architectural solution: needs hardware 
•  What if translation tables change? 

–  For example, to move page from memory to disk or 
vice versa… 

– Must invalidate TLB entry! 
» Otherwise, might think that page is still in memory! 
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Summary #1/2 
•  The Principle of Locality: 

–  Program likely to access a relatively small portion of the 
address space at any instant of time. 

» Temporal Locality: Locality in Time 
» Spatial Locality: Locality in Space 

•  Three (+1) Major Categories of Cache Misses: 
–  Compulsory Misses: sad facts of life.  Example: cold start 
misses. 

–  Conflict Misses: increase cache size and/or associativity 
–  Capacity Misses: increase cache size 
–  Coherence Misses: Caused by external processors or I/O 
devices 

•  Cache Organizations: 
–  Direct Mapped: single block per set 
–  Set associative: more than one block per set 
–  Fully associative: all entries equivalent 
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Summary #2/2: Translation Caching (TLB) 
•  PTE: Page Table Entries 

–  Includes physical page number 
–  Control info (valid bit, writeable, dirty, user, etc) 

•  A cache of translations called a “Translation Lookaside 
Buffer” (TLB) 
–  Relatively small number of entries (< 512) 
–  Fully Associative (Since conflict misses expensive) 
–  TLB entries contain PTE and optional process ID 

•  On TLB miss, page table must be traversed 
–  If located PTE is invalid, cause Page Fault  

•  On context switch/change in page table 
–  TLB entries must be invalidated somehow  


