
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 13

Address Translation (con’t)
Caches and TLBs

March 2, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 13.2 3/2/10 CS162 ©UCB Spring 2010

Review: Single-Level Translation

•  Advantages
–  Low translation overhead
–  Simplicity

•  Disadvantages
–  Large page tables

» E.g., 32b address space, 4KB pages up to 210 =
1mil page entries for each process

–  Expensive to share memory
» E.g., 4KB pages, want to share 100MB need to

update 25,000 entries in page table

Physical Address
Offset

Offset Virtual
Page # Virtual Address:

Access
Error

> PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W

N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

Lec 13.3 3/2/10 CS162 ©UCB Spring 2010

•  What about a tree of tables?
–  Lowest level page table⇒memory still allocated with bitmap
–  Higher levels often segmented

•  Could have any number of levels. Example (top segment):

•  What must be saved/restored on context switch?
–  Contents of top-level segment registers (for this example)
–  Pointer to top-level table (page table)

Review: Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: Offset Virtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error >

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

Lec 13.4 3/2/10 CS162 ©UCB Spring 2010

Physical
Address: Offset Physical

Page #

4KB

Review: Two-level page table
10 bits 10 bits 12 bits

Virtual
Address: Offset Virtual

P2 index
Virtual

P1 index

4 bytes

PageTablePtr

•  Tree of Page Tables
•  Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

•  Sometimes, top-level page tables
called “directories” (Intel)

•  Each entry called a (surprise!)
Page Table Entry (PTE) 4 bytes

Page 2

Lec 13.5 3/2/10 CS162 ©UCB Spring 2010

Goals for Today

•  Finish discussion of both Address Translation and
Protection

•  Caching and TLBs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 13.6 3/2/10 CS162 ©UCB Spring 2010

What is in a PTE?
•  What is in a Page Table Entry (or PTE)?

–  Pointer to next-level page table or to actual page
–  Permission bits: valid, read-only, read-write, write-only

•  Example: Intel x86 architecture PTE:
–  Address same format previous slide (10, 10, 12-bit offset)
–  Intermediate page tables called “Directories”

 P: Present (same as “valid” bit in other architectures)
 W: Writeable
 U: User accessible
 PWT: Page write transparent: external cache write-through
 PCD: Page cache disabled (page cannot be cached)
 A: Accessed: page has been accessed recently
 D: Dirty (PTE only): page has been modified recently
 L: L=1⇒4MB page (directory only).

 Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD

PW
T

U W P

0 1 2 3 4 5 6 7 8 11-9 31-12

Lec 13.7 3/2/10 CS162 ©UCB Spring 2010

Examples of how to use a PTE
•  How do we use the PTE?

–  Invalid PTE can imply different things:
» Region of address space is actually invalid or
»  Page/directory is just somewhere else than memory

–  Validity checked first
•  Usage Example: Demand Paging

–  Keep only active pages in memory
–  Place others on disk and mark their PTEs invalid

•  Usage Example: Copy on Write
–  UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
–  How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
»  Page fault on write creates two copies

•  Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

Lec 13.8 3/2/10 CS162 ©UCB Spring 2010

How is the translation accomplished?

•  What, exactly happens inside MMU?
•  One possibility: Hardware Tree Traversal

–  For each virtual address, takes page table base pointer
and traverses the page table in hardware

–  Generates a “Page Fault” if it encounters invalid PTE
»  Fault handler will decide what to do
» More on this next lecture

–  Pros: Relatively fast (but still many memory accesses!)
–  Cons: Inflexible, Complex hardware

•  Another possibility: Software
–  Each traversal done in software
–  Pros: Very flexible
–  Cons: Every translation must invoke Fault!

•  In fact, need way to cache translations for either case!

CPU MMU
Virtual

Addresses
Physical

Addresses

Page 3

Lec 13.9 3/2/10 CS162 ©UCB Spring 2010

Dual-Mode Operation

•  Can Application modify its own translation tables?
–  If it could, could get access to all of physical memory
–  Has to be restricted somehow

•  To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
–  “Kernel” mode (or “supervisor” or “protected”)
–  “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

•  Intel processor actually has four “rings” of
protection:
–  PL (Priviledge Level) from 0 – 3

»  PL0 has full access, PL3 has least
–  Privilege Level set in code segment descriptor (CS)
–  Typical OS kernels on Intel processors only use PL0
(“user”) and PL3 (“kernel”)

Lec 13.10 3/2/10 CS162 ©UCB Spring 2010

For Protection, Lock User-Programs in Asylum
•  Idea: Lock user programs in padded cell

with no exit or sharp objects
–  Cannot change mode to kernel mode
–  User cannot modify page table mapping
–  Limited access to memory: cannot
adversely affect other processes

» Side-effect: Limited access to
memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

–  Limited access to interrupt controller
•  A couple of issues

–  How to share CPU between kernel and user programs?
»  Kinda like both the inmates and the warden in asylum are

the same person. How do you manage this?
–  How do programs interact?
–  How does one switch between kernel and user modes?

» OS → user (kernel → user mode): getting into cell
» User→ OS (user → kernel mode): getting out of cell

Lec 13.11 3/2/10 CS162 ©UCB Spring 2010

How to get from Kernel→User
•  What does the kernel do to create a new user

process?
–  Allocate and initialize address-space control block
–  Read program off disk and store in memory
–  Allocate and initialize translation table

»  Point at code in memory so program can execute
»  Possibly point at statically initialized data

–  Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

•  How does kernel switch between processes?
–  Same saving/restoring of registers as before
–  Save/restore PSL (hardware pointer to translation table)

Lec 13.12 3/2/10 CS162 ©UCB Spring 2010

User→Kernel (System Call)
•  Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
–  So, how does the user program get back into kernel?

•  System call: Voluntary procedure call into kernel
–  Hardware for controlled User→Kernel transition
–  Can any kernel routine be called?

» No! Only specific ones.
–  System call ID encoded into system call instruction

»  Index forces well-defined interface with kernel

Page 4

Lec 13.13 3/2/10 CS162 ©UCB Spring 2010

System Call Continued
•  What are some system calls?

–  I/O: open, close, read, write, lseek
–  Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
–  Process: fork, exit, wait (like join)
– Network: socket create, set options

•  Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
–  Also some standardization attempts (POSIX)

•  What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

•  System Call argument passing:
–  In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated
»  Kernel has different view of memory than user

–  Every Argument must be explicitly checked!
Lec 13.14 3/2/10 CS162 ©UCB Spring 2010

User→Kernel (Exceptions: Traps and Interrupts)
•  A system call instruction causes a synchronous

exception (or “trap”)
–  In fact, often called a software “trap” instruction

•  Other sources of Synchronous Exceptions:
–  Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

–  Segmentation Fault (address out of range)
–  Page Fault (for illusion of infinite-sized memory)

•  Interrupts are Asynchronous Exceptions
–  Examples: timer, disk ready, network, etc….
–  Interrupts can be disabled, traps cannot!

•  On system call, exception, or interrupt:
–  Hardware enters kernel mode with interrupts disabled
–  Saves PC, then jumps to appropriate handler in kernel
–  For some processors (x86), processor also saves
registers, changes stack, etc.

•  Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 13.15 3/2/10 CS162 ©UCB Spring 2010

Closing thought: Protection without Hardware
•  Does protection require hardware support for

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

•  Protection via Strong Typing
–  Restrict programming language so that you can’t express
program that would trash another program

–  Loader needs to make sure that program produced by
valid compiler or all bets are off

–  Example languages: LISP, Ada, Modula-3 and Java
•  Protection via software fault isolation:

–  Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 13.16 3/2/10 CS162 ©UCB Spring 2010

Administrivia

•  Midterm in 1 week:
– Monday, 3/9, 3:30-6:30pm, (277 Cory Hall - this room!)
–  Should be 2 hour exam with extra time
–  Closed book, one page of hand-written notes (both sides)

•  No class on day of Midterm
–  Extra Office Hours: Next tuesday 1:00-3:00

•  Midterm Topics
–  Topics: Everything up to Thursday 3/4
–  History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces, TLBs

•  Make sure to fill out Group Evaluations!
•  Project 2

–  Initial Design Document due Thursday 3/4
–  Look at the lecture schedule to keep up with due dates!

Page 5

Lec 13.17 3/2/10 CS162 ©UCB Spring 2010

Caching Concept

•  Cache: a repository for copies that can be accessed
more quickly than the original
– Make frequent case fast and infrequent case less dominant

•  Caching underlies many of the techniques that are used
today to make computers fast
–  Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc…

•  Only good if:
–  Frequent case frequent enough and
–  Infrequent case not too expensive

•  Important measure: Average Access time =
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 13.18 3/2/10 CS162 ©UCB Spring 2010

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10
yrs)

DRAM

1

10

100

1000

19
80

19

81

19
83

19

84

19
85

19

86

19
87

19

88

19
89

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”

Lec 13.19 3/2/10 CS162 ©UCB Spring 2010

•  Cannot afford to translate on every access
–  At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

•  Even worse: What if we are using caching to make
memory access faster than DRAM access?

•  Solution? Cache translations!
–  Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: Offset Virtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error >

Physical
Page #

Check Perm

Access
Error

Lec 13.20 3/2/10 CS162 ©UCB Spring 2010

Why Does Caching Help? Locality!

•  Temporal Locality (Locality in Time):
–  Keep recently accessed data items closer to processor

•  Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space 0 2n - 1

Probability
of reference

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Page 6

Lec 13.21 3/2/10 CS162 ©UCB Spring 2010

Memory Hierarchy of a Modern Computer System
•  Take advantage of the principle of locality to:

–  Present as much memory as in the cheapest technology
–  Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs Size (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts

Lec 13.22 3/2/10 CS162 ©UCB Spring 2010

•  Compulsory (cold start or process migration, first
reference): first access to a block
–  “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

•  Capacity:
–  Cache cannot contain all blocks access by the program
–  Solution: increase cache size

•  Conflict (collision):
– Multiple memory locations mapped
to the same cache location

–  Solution 1: increase cache size
–  Solution 2: increase associativity

•  Coherence (Invalidation): other process (e.g., I/O)
updates memory

A Summary on Sources of Cache Misses

Lec 13.23 3/2/10 CS162 ©UCB Spring 2010

•  Index Used to Lookup Candidates in Cache
–  Index identifies the set

•  Tag used to identify actual copy
–  If no candidates match, then declare cache miss

•  Block is minimum quantum of caching
–  Data select field used to select data within block
– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

Lec 13.24 3/2/10 CS162 ©UCB Spring 2010

:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 33 Byte 63 :

Byte 992 Byte 1023 : 31

Review: Direct Mapped Cache
•  Direct Mapped 2N byte cache:

–  The uppermost (32 - N) bits are always the Cache Tag
–  The lowest M bits are the Byte Select (Block Size = 2M)

•  Example: 1 KB Direct Mapped Cache with 32 B Blocks
–  Index chooses potential block
–  Tag checked to verify block
–  Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0 4 31
Cache Tag Byte Select

9

Ex: 0x01

Page 7

Lec 13.25 3/2/10 CS162 ©UCB Spring 2010

Cache Index
0 4 31

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Mux 0 1 Sel1 Sel0

OR

Hit

Review: Set Associative Cache
•  N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
•  Example: Two-way set associative cache

–  Cache Index selects a “set” from the cache
–  Two tags in the set are compared to input in parallel
–  Data is selected based on the tag result

Compare Compare

Cache Block
Lec 13.26 3/2/10 CS162 ©UCB Spring 2010

Review: Fully Associative Cache
•  Fully Associative: Every block can hold any line

–  Address does not include a cache index
–  Compare Cache Tags of all Cache Entries in Parallel

•  Example: Block Size=32B blocks
– We need N 27-bit comparators
–  Still have byte select to choose from within block

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag

0 4
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 13.27 3/2/10 CS162 ©UCB Spring 2010

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block
no.

Where does a Block Get Placed in a Cache?

Lec 13.28 3/2/10 CS162 ©UCB Spring 2010

•  Easy for Direct Mapped: Only one possibility
•  Set Associative or Fully Associative:

–  Random
–  LRU (Least Recently Used)

 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

 16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
 64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

Page 8

Lec 13.29 3/2/10 CS162 ©UCB Spring 2010

•  Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

•  Write back: The information is written only to the
block in the cache.
– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
•  Pros and Cons of each?

– WT:
»  PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
»  PRO: repeated writes not sent to DRAM

 processor not held up on writes
» CON: More complex

 Read miss may require writeback of dirty data

Review: What happens on a write?

Lec 13.30 3/2/10 CS162 ©UCB Spring 2010

Caching Applied to Address Translation

•  Question is one of page locality: does it exist?
–  Instruction accesses spend a lot of time on the same
page (since accesses sequential)

–  Stack accesses have definite locality of reference
–  Data accesses have less page locality, but still some…

•  Can we have a TLB hierarchy?
–  Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address Physical

Address
Yes

Cached?

Sa
ve

Re
sul

t

Lec 13.31 3/2/10 CS162 ©UCB Spring 2010

What Actually Happens on a TLB Miss?
•  Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

»  If PTE valid, hardware fills TLB and processor never knows
»  If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
•  Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
–  Kernel traverses page table to find PTE

»  If PTE valid, fills TLB and returns from fault
»  If PTE marked as invalid, internally calls Page Fault handler

•  Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

–  Examples:
»  shared segments
»  user-level portions of an operating system

Lec 13.32 3/2/10 CS162 ©UCB Spring 2010

What happens on a Context Switch?

•  Need to do something, since TLBs map virtual
addresses to physical addresses
–  Address Space just changed, so TLB entries no
longer valid!

•  Options?
–  Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
–  Include ProcessID in TLB

» This is an architectural solution: needs hardware
•  What if translation tables change?

–  For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Page 9

Lec 13.33 3/2/10 CS162 ©UCB Spring 2010

Summary #1/2
•  The Principle of Locality:

–  Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

•  Three (+1) Major Categories of Cache Misses:
–  Compulsory Misses: sad facts of life. Example: cold start
misses.

–  Conflict Misses: increase cache size and/or associativity
–  Capacity Misses: increase cache size
–  Coherence Misses: Caused by external processors or I/O
devices

•  Cache Organizations:
–  Direct Mapped: single block per set
–  Set associative: more than one block per set
–  Fully associative: all entries equivalent

Lec 13.34 3/2/10 CS162 ©UCB Spring 2010

Summary #2/2: Translation Caching (TLB)
•  PTE: Page Table Entries

–  Includes physical page number
–  Control info (valid bit, writeable, dirty, user, etc)

•  A cache of translations called a “Translation Lookaside
Buffer” (TLB)
–  Relatively small number of entries (< 512)
–  Fully Associative (Since conflict misses expensive)
–  TLB entries contain PTE and optional process ID

•  On TLB miss, page table must be traversed
–  If located PTE is invalid, cause Page Fault

•  On context switch/change in page table
–  TLB entries must be invalidated somehow

